Many individuals possess B cells capable of recognizing epitopes on the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this issue of the JCI, Paschold and Simnica et al. interrogated the frequency of SARS-CoV-2-specific B cell receptor rearrangements in healthy subjects based on age and cancer status. The authors found that while SARS-CoV-2-specific antibody signatures can be identified in the repertoires of young, healthy individuals, such sequences are less frequent in elderly subjects or patients with cancer. Overall, this study sheds light on B cell repertoire restrictions that might lead to an unfavorable clinical course of coronavirus disease 2019 infection in at-risk populations.The coronavirus disease 2019 (COVID-19) pandemic continues to cause morbidity and mortality. Since SARS coronavirus 2 (SARS-CoV-2) was identified as the cause for COVID-19, some have questioned whether exposure to seasonal common cold coronaviruses (CCCs) could provide tangible protection against SARS-CoV-2 infection or disease. In this issue of the JCI, Sagar et al. examined SARS-CoV-2 infections and outcomes of patients who had previously tested positive or negative for CCC infection (CCC+ or CCC-) by a comprehensive respiratory panel using PCR. No differences were seen between groups in terms of susceptibility to SARS-CoV-2 infection. However, hospitalized patients with a documented history of CCC infection had lower rates of intensive care unit (ICU) admissions and higher rates of survival than hospitalized CCC- patients. While these findings are associative and not causative, they highlight evidence suggesting that previous CCC infection may influence the disease course of SARS-CoV-2 infection.Breast cancer is one of the most lethal malignancies among women, and understanding the effects of host immunity on disease progression offers the potential to improve immunotherapies against it. Here, we constructed an immunity-related gene (IRG)-based prognostic signature to stratify breast cancer patients and predict their survival. We identified differentially-expressed genes by analyzing the breast cancer transcriptome data from The Cancer Genome Atlas. Univariate Cox regression revealed 179 survival-correlated IRGs, 12 of which we used to construct an immunity-based prognostic signature that stratified breast cancer patients into high- and low-risk groups. The signature was an independent predictor for survival and was validated in an independent dataset. We also investigated the correlations between our prognostic signature and immune infiltrates and found that signature-derived risk scores correlated negatively with infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils and dendritic cells. Our results show that the proposed prognostic signature reflects the tumor immune microenvironment, which makes it a potential indicator for survival that warrants further research to assess its clinical utility.In this study, we used bioinformatics tools to analyze transcriptome data from cholangiocarcinoma (CCA) patients in multiple datasets (Sun Yat-sen University, TCGA and GSE32225 cohorts) to identify mechanisms that regulate tumor infiltration by immune cells and survival outcomes. We identified 96 differentially expressed genes (DEGs), including 13 upregulated and 83 downregulated genes, in CCA tissues as regulatory T cells were significantly higher and the proportions of activated natural killer cells and monocytes were significantly lower in CCA tissues than the precancerous tissues. The survival outcomes of CCA patients were associated with the TP53 gene mutation status, levels of Oncostatin M (OSM) expression, and the proportions of tumor-infiltrating immune cell types, including dendritic cells, monocytes, and T follicular helper cells. Functional enrichment analysis of the DEGs in the high OSM-expressing CCA tissues showed that pathways related to tumor progression and immune response were significantly upregulated. Our study demonstrates that OSM expression and TP53 mutation status regulate the tumor infiltration by immune cells and survival outcomes in CCA. OSM is thus a potential prognostic biomarker and therapeutic target in cholangiocarcinoma.Prostate cancer mortality-to-incidence ratios (MIRs) are associated with the level of available healthcare. However, no data are currently available to show an association between differences in the prostate cancer MIRs and healthcare disparity. In the present study, changes in MIR over time (δMIR) were calculated as the difference between MIRs in 2018 and 2012. The significance between expenditures on healthcare and the human development index (HDI) were analyzed using Spearman's rank correlation coefficient. A total of 47 countries were studied. Countries were excluded based on inadequate data quality and missing data. The crude prostate cancer incidence rates, but not mortality rates, correlated with the HDI score and healthcare expenditure. A high HDI score and high healthcare expenditure were also significantly associated with a favorable MIR (ρ = -0.704, p less then 0.001; ρ = -0.741, p less then 0.001, respectively). Importantly, healthcare disparities were negatively associated with the improvement in δMIR (ρ = -0.556, p less then 0.001; ρ = -0.506, p less then 0.001, respectively). These findings indicate that favorable prostate cancer MIRs are associated with higher healthcare expenditures, but the trends in MIR between 2012 and 2018 correlate negatively with HDI and healthcare expenditure.In the present study, we investigated the role of lncRNA mus distal-less homeobox 6 antisense 1 (DLX6-AS1) during cerebral impairment induced by stroke. DLX6-AS1 levels were upregulated during ischemia/reperfusion (I/R) and downregulation of DLX6-AS1 reduced acute injury and ameliorated long-term neurological impairments induced by cerebral I/R in mice. Additionally, silencing of DLX6-AS1 significantly decreased the neuronal apoptosis in vivo and in vitro. Furthermore, inhibition of miRNA-149-3p led to enhance the apoptosis, which confirmed that DLX6-AS1 could sponge miR-149-3p. https://www.selleckchem.com/products/talabostat.html Finally, BOK was predicted to be the target of miR-149-3p using TargetScanVert software. And the silencing of DLX6-AS1 inhibited BOK expression both in vivo and in vitro, which was reversed by a miR-149-3p inhibitor. At meantime, BOK promoted OGD/R induced apoptosis in N2a cells. Therefore, this suggests that miR-149-3p sponging by DLX6-AS1 may lead to cerebral neuron I/R-induced impairments through upregulation of apoptotic BOK activity, which offers a new approach to the treatment of stroke impairment.