https://www.selleckchem.com/products/incb054329.html On the other hand, C. erythropterus has the highest Hg concentration due to its relatively high trophic level position. The average THQ value of metals in fish tissue decrease in the order of As > Hg > Pb > Cd > Cr and the total THQ of average metal concentration in fish species decreased in the order of C. auratus > C. erythropterus > H. molitrix. Both THQ and total THQ is below 1, suggested no non-carcinogenic human health risk of fish consumption. However, TR of As in C. auratus was above 1.00E-04 threshold value, indicated potential carcinogenic human health risk. The results from this study indicate that although moderately to heavily contamination of Hg, As, and Cd occurred in Dianchi Lake sediment, only Hg and As tend to transport to surface water and accumulate in commercial fish due to their higher mobility in sediment. Triafamone is a highly effective, low toxicity sulfonamide herbicide widely used for weeding paddy fields. The triafamone photodegradation in water environment must be explored for its ecological risk assessment. In this work, the effects of chemical fertilizer (urea, diammonium phosphate, potassium chloride, and potassium sulfate), urea metabolites (CO32- and HCO3-), and organic fertilizers (unfermented organic fertilizer [UOF] and fermented organic fertilizer [FOF]) on the triafamone photodegradation in aqueous solution under simulated sunlight were evaluated. Results showed that the triafamone photodegradation rate was unaffected by urea. The half-life of triafamone decreased from 106.8 h to 68.4 h with increasing diammonium phosphate concentration. Potassium chloride, potassium sulfate, CO32-, and HCO3- could accelerate the triafamone photodegradation at all concentrations, whereas the degradation rate of triafamone decreased when the concentration of potassium sulfate or CO32- was 2000 mg/L. Triafamone photodegradation was promoted by 20-200 mg/L UOF and FOF but decreased to 236.6 and