Green leafy vegetables (GLVs) are abundant in bioactive compounds and constitute a crucial part of a balanced diet. Sri Lankan green leafy vegetables which are edible and available for consumption have not been thoroughly investigated, whilst their consumption can deflate the risk of arising several degenerative diseases, such as cancer and cardiovascular diseases. The present study was aimed at evaluating the antioxidant capacities of the leafy vegetables, Gymnema lactiferum (Kurignan), Wattakaka volubilis (Aguna), and Argyreia populifolia (Girithilla), with different thermal treatments (70°C, 120°C, and 170°C) which are used in domestic cooking processes. Heat treatments significantly affect the antioxidant capacity and polyphenolic content of most vegetables analyzed, either increasing or decreasing the concentration of these compounds. In the presence of thermal treatments, Gymnema lactiferum (14.52-20.28 mg GAE/g DW) and Wattakaka volubilis (19.75-27.13 mg GAE/g DW) showed a significantly higher (p less then 0.05) total phenolic content. The temperature treatment did not alter the ABTS radical scavenging activity in Gymnema lactiferum. In contrast, an increment of ferric reducing antioxidant power (41.26-54.85 mg TE/g DW) and DPPH radical scavenging activity (0.11-0.26 mg TE/g DW) was observed. Wattakaka volubilis treated at 170°C appeared to have a significantly higher amount (104.93 ± 1.41 mg TE/g DW) of ferric reducing antioxidant power compared to its raw form. All cooking processes with their corresponding thermal treatments caused a significantly lower (p less then 0) amount of antioxidant capacity in Argyreia populifolia.In connection with the severe deficiencies of EPA and DHA in the human diet, the industry should provide inexpensive fish products that are characterized by the appropriate lipid quality. The influence of the technological process on true retention rate of EPA and DHA, indicators of lipid oxidation and physical properties, of canned smoked sprat in oil was investigated. It was assumed that the double dose of heat during the technological process (smoking/sterilization) can significantly affect the quality of lipids. The study was carried out on fresh fish and after frozen storage. After smoking, the percentage of EPA and DHA in lipids did not change significantly, while the content of these acids per wet weight (g/100 g) increased by about 20%. During smoking, a faster increase in oxidation products was observed in frozen fish (increase by 22%-36%) than in fresh fish (increase by 31%-54%). Sterilization caused EPA and DHA to be "regrouped" from the fish to the oil rather than their physical losses. After sterilization, the fish retained 70%-77% EPA and DHA content (the rest passed into the oil). EPA and DHA losses were 8.5% higher in canned products obtained from frozen fish compared to fresh fish. True retention should be used to assess changes in EPA and DHA content in fish after sterilization (and not the expression of EPA and DHA content in % or g/100 g). A better indicator of changes in the physical parameters of canned fish after sterilization is the analysis of the proportion of the water layer rather than mass measurement. Despite the double dose of heat that occurred during the canned sprat production process, the peroxide value in fish and in oil did not exceed 10 (mEqO2/kg of lipid) and p-anisidine value did not exceed 20. This means that these lipids were characterized by good quality.Regenerative medicine is considered as an alternative approach to healthcare. Owing to their pluripotent abilities and their relative lack of ethical and legal issues, adult stem cells are considered as optimal candidates for use in the treatment of various diseases. Bone marrow-derived mesenchymal stem cells are among the most promising candidates for clinical applications as they have expressed a higher degree of plasticity in vitro. Many investigators have begun to examine how bone marrow stem cells might be used to rebuild damaged tissues. The systemic administration of cells for therapeutic applications requires efficient migration and homing of cells to the target site. Cell adhesion molecules and their ligands, chemokines, extracellular matrix components and specialized bone marrow niches all participate in the proper regulation of this process. MSCs suppress the pathophysiological process that is mediated by chronic inflammation and contributes to a modification of the microenvironment and tissue regeneration. Due to the intricacy of the mesenchymal stem cell, there is ever-increasing amount of data emerging about their migration and regenerative mechanisms. Many factors influence MSC mobilization and their homing to injured tissues. This review summarizes the current clinical and pre-clinical data available in literature regarding the use of MSC in tissue repair and their prospective therapeutic role in various diseases and the underlying repair mechanisms will be discussed. Mesenchymal stem cells (MSCs) with immunoregulatory properties affect immune systems. Many studies showed that antioxidants such as vitamin E (Vit E) and selenium (Se) could improve stem cells survival. This study aims to investigate the effects of MSC conditioned media (CM) treated with Vit E and Se on immune cells. MSCs were isolated and cultured with Vit E and Se. Immature dendritic cells (DCs) and peripheral blood mononuclear cells (PBMCs) were cultured with MSC CM treated with Vit E and Se. The expression of HLA-DR, CD86, CD40, and CD83 on mature DC were evaluated. DC supernatant and PBMCs supernatant was collected for the study of TGF-β, IL-10, and IL-12. PBMCs evaluated for the expression of T-bet, GATA3, RORγt, and FOXP3. MSC CM increased CD40 on myeloid DC (mDC). CD40 has been decreased in DC treated with MSC (Vit E) and MSC (Se) CM. HLA-DR expression on DCs and IL-12 level were significantly reduced in MSC (Vit E) CM. IL-10 concentration increased in DCs treated with MSC (Vit E) and MSC (Se) CM. https://www.selleckchem.com/products/mivebresib-abbv-075.html Treatment of PBMCs with MSC CM decreased IL-10 level, FOXP3, and RORγt expression. On the other hand, the MSC (Vit E) CM and MSC (Se) CM decreased the IL-10 level and increased IL-12, T-bet, and RORγt. According to the results, the treatment of MSC with Vit E and Se enhanced the ability of MSCs to inhibit DCs and improved immunomodulatory effects. Concerning the effect of MSC on PBMC, it seems that it increased RORγt expression through monocytes. According to the results, the treatment of MSC with Vit E and Se enhanced the ability of MSCs to inhibit DCs and improved immunomodulatory effects. Concerning the effect of MSC on PBMC, it seems that it increased RORγt expression through monocytes.