https://www.selleckchem.com/products/choline-hydroxide.html Consequently, SiH/CeO2(111) is a potential photocatalyst for splitting water to hydrogen.An antimony based luminescent organic-inorganic hybrid compound H3SbCl6(L)6 (1, L = 2-(3-methyl-1H-imidazol-3-ium-1-yl)acetate) has been prepared by the solvothermal method. It emits bright green light peaking at 525 nm, with an internal quantum yield (IQY) of 73% under 360 nm excitation. The negative thermal quenching (NTQ) effect has been observed in the temperature range of 77 K to 297 K. Due to its ionic structure, compound 1 is soluble in numerous organic solvents, including methanol, dimethyl sulfoxide (DMSO), etc. The solution processability combined with high quantum efficiency makes 1 a promising candidate as a luminescent coating material for optoelectronic devices.3D printing (also called "additive manufacturing" or "rapid prototyping") is able to translate computer-aided and designed virtual 3D models into 3D tangible constructs/objects through a layer-by-layer deposition approach. Since its introduction, 3D printing has aroused enormous interest among researchers and engineers to understand the fabrication process and composition-structure-property correlation of printed 3D objects and unleash its great potential for application in a variety of industrial sectors. Because of its unique technological advantages, 3D printing can definitely benefit the field of microrobotics and advance the design and development of functional microrobots in a customized manner. This review aims to present a generic overview of 3D printing for functional microrobots. The most applicable 3D printing techniques, with a focus on laser-based printing, are introduced for the 3D microfabrication of microrobots. 3D-printable materials for fabricating microrobots are reviewed in detail, including photopolymers, photo-crosslinkable hydrogels, and cell-laden hydrogels. The representative applications of 3D-printed microrobots with ratio