After defining the optimum conditions for the pretreatment scheme, the anaerobic digestability of the effluents produced was measured. Finally, the final liquid effluents were fed to a pilot scale anaerobic digester of 0.5 m3 volume, applying an increasing organic loading rate (OLR) regime (in terms of chemical oxygen demand (COD) from 0.2 to 15 kg COD/m3/day). The optimum conditions for the delignification and enzymatic hydrolysis of WS were defined as 0.5 M NaOH at 50 °C for 3-5 h and 15 μL Cellic CTec2/g pretreated straw at 50 °C. It was proven that the resulting liquid effluents could be fed to an anaerobic digester in the ratio that they are produced with satisfactory COD removal efficiencies (over 70%) for OLRs up to 10 kg COD/m3/day. This value is correspondent to a hydraulic retention time of around 7.5 days, much lower than the respective one for untreated straw (over 12 days).Recovery, physicochemical and functional characteristics of proteins recovered from different meat processing wastewater streams were revealed in the present study. Wastewaters from surimi processing (SPW) and slaughterhouses, namely fish (FSW), cattle (CSW), poultry (PSW), and goat (GSW), exhibited protein, fat, ash, moisture, and microbial load in the range of 1.28-7.04%, 0.86-2.34%, 0.02-0.80%, 89.81-97.44%, and 5.33-5.81 CFU/mL, respectively. Among the wastewaters, SPW presented slightly higher protein (7.04%), fat (2.34%), and ash (0.80%) contents (P  less then  0.05). Furthermore, proteins recovered from SPW (SPWP) and FSW (FSWP), CSW (CSWP), PSW (PSWP), and GSW (GSWP) presented yield, protein, fat, ash, and moisture content in the range of 55.54-76.81%, 65.86-78.22%, 7.26-11.45%, 4.58-11.75%, and 5.67-14.79%. https://www.selleckchem.com/products/GDC-0449.html All protein samples displayed higher essential amino acid (EAA) content with leucine (8.47-14.52 g/100 g) as a predominant amino acid. GSWP and SPWP scored the highest and lowest EAA contents, respectively. SPWP displayed myofibrillar proteins as dominant proteins, while slaughterhouses' wastewater proteins showed blood proteins as major proteins. β-Sheet is the major secondary structure presented by all protein samples. SPWP showed the highest lightness value as compared to other protein counterparts (P  less then  0.05). All protein samples from slaughterhouse wastewaters had the lowest protein solubility at pH 4.5. However, SPWP presented minimum solubility at pH 5.5. Among all protein samples, SPWP presented slightly higher water holding capacity and foaming property (P  less then  0.05), whereas FSWP displayed slightly higher emulsion property (P  less then  0.05). Overall, all meat processing wastewater streams served as good sources of high-quality proteins, which could be used as protein ingredients in animal feed formulation.This study investigated and identified the distribution of drug resistance genes in feces, soil, and water of duck farms in Zhanjiang, China, and analyzed the drug resistance of Salmonella in the duck farm environment. PCR was used to assess the distribution of 25 resistance genes that are common in the duck farm environment. The isolation, biochemical identification, PCR identification of Salmonella, and the minimum inhibitory concentration (MIC) of 22 drugs were measured by micro-broth double dilution. In water, 25 drug resistance genes were detected, 24 in soil, and 23 in feces. Among them, the detection rate of the aadA1 gene in soil reached 100%, 13 drug resistance genes had a detection rate above 80%, and five species had a detection rate below 50%. In water, the detection rate of the floR and aadA1 genes was 100%, 12 drug resistance genes had a detection rate above 80%, and eight genes had a detection rate below 50%. In feces, nine drug resistance genes had a detection rate of 100%, nine genes had a detection rate above 80%, and one gene had a detection rate below 50%. In addition, 92 strains of Salmonella were isolated and identified, and their resistance rate to nine drugs was as high as 100%. All isolated Salmonella can tolerate at least nine drugs, 55.43% (51/92) of the strains can tolerate more than 16 drugs, and 4.35% (4/92) of the strains were resistant to up to 21 drugs. In conclusion, the present experiment suggested that drug resistance genes were ubiquitous in the duck farm environment in Zhanjiang and that these drug resistance genes may spread horizontally between feces, soil, and water. Moreover, drug resistance and multi-drug resistance were found for 92 isolated Salmonella strains from the duck farm environment. The government should consequently strengthen the regulation of antimicrobial drug use in duck farms.Bacterial transport and deposition play an important role in the assessment and prediction of subsurface pollution risks. Bacteria transport experiments were performed under unsaturated flow conditions in an aggregated porous medium at the laboratory column scale, to investigate how the inter- and intra-aggregated pore space of this medium could affect transport and deposition under unsaturated flow conditions, where inter- and intra-pore spaces are not fully activated. The results obtained through experimental observations and numerical simulations showed that some intra- and inter-pore space of this medium was excluded from bacteria transport and retention, as confirmed by the non-uniform transport of bacteria pathways in the aggregated porous media under unsaturated flow conditions. Capillary energy was higher the than other forces acting at bacteria air-water-solid interfaces. If this energy should contribute in increasing bacteria deposition under unsaturated conditions, similar to what has been reported for sandy media, similar overall retention of E. coli and R. rhodochrous was obtained under unsaturated flow conditions, suggesting that capillary energy was not the driving force for bacteria deposition.Hepatoprotection is a goal for the harmful effect of several hepatotoxic agents. The present study has been executed to assess the useful impacts of Tribulus terrestris (TT) and silymarin (SLM) against carbon tetrachloride (CCL4)-induced hepatotoxicity. Forty-two male rats were partitioned into six groups group I received 0.3% CMC-Na in distilled water, group II TT (500 mg/kg BW, orally), group III SLM (200 mg/kg, orally) for 14 consecutive days (on days 11 and 12 intraperitoneal corn oil), group IV CCL4, group V TT (500 mg/kg BW) plus CCL4, and group VI SLM (200 mg/kg orally) plus CCL4. The CCL4 was administered (2.0 ml/kg BW) intraperitoneal on days 11 and 12. Sera were collected for assessment of hepatic injury markers and pro-inflammatory cytokines. Additionally, liver tissue oxidative stress, lipid peroxidation, histopathological examination, and immunohistochemical analysis (Bax and bcl-2) were done. CCL4 injection induced significant reductions in hepatic antioxidants while increased hepatic lipid peroxidation as well as serum hepatic injury biomarkers and pro-inflammatory cytokines.