https://www.selleckchem.com/products/smoothened-agonist-sag-hcl.html he field of chromosome biology and meiosis in holocentric plants.Bananas are an important staple food crop in tropical and subtropical regions in Asia, sub-Saharan Africa, and Central and South America. The plant is affected by numerous diseases, with the fungal leaf disease black Sigatoka, caused by Mycosphaerella fijiensis Morelet [anamorph Pseudocercospora fijiensis (Morelet) Deighton], considered one of the most economically important phytosanitary problem. Although the development of resistant cultivars is recognized as most effective method for long term control of the disease, the majority of today's cultivars are susceptible. In order to gain insights into this pathosystem, this first systematic literature review on the topic is presented. Utilizing six databases (PubMed Central, Web of Science, Google Academic, Springer, CAPES and Scopus Journals) searches were performed using pre-established inclusion and exclusion criteria. From a total of 3,070 published studies examined, 24 were relevant with regard to the Musa-P. fijiensis pathosystem. Relevant papers highligmation gathered in this review furthers understanding of the immune response in Musa to the pathogen P. fijiensis and is relevant for genetic improvement programs for bananas and plantains for control of black Sigatoka.Wheat stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt) is a global threat to wheat production. Fast evolving populations of Pgt limit the efficacy of plant genetic resistance and constrain disease management strategies. Understanding molecular mechanisms that lead to rust infection and disease susceptibility could deliver novel strategies to deploy crop resistance through genetic loss of disease susceptibility. We used comparative transcriptome-based and orthology-guided approaches to characterize gene expression changes associated with Pgt infection in susceptible and resistant Triticum aestivum g