quality of life. Copyright © 2020 LaFollette, Riley, Cloutier, Brady, O'Haire and Gaskill.After introduction of the anticoccidial toltrazuril for the metaphylactic treatment of suckling piglet coccidiosis, only few field evaluations on the effect of treatment against the causative agent, Cystoisospora suis, were performed. In 2018, a field study was conducted to detect the presence of the parasite on pig farms in four different European countries, and to evaluate management parameters possibly associated with infection and disease. A total of 49 farms from Austria, the Czech Republic, Germany and Spain were included. Repeated pooled fecal samples from 603 litters were taken in the 2nd and 3rd week of life. Samples were examined by autofluorescence for the presence of C. suis, and fecal consistency was scored. For each farm a questionnaire was provided to document management and treatment history. Feces scored as diarrhoeic were not significantly more often positive for C. suis than non-diarrhoeic feces but samples from litters with previously reported occurrence of diarrhea were significantly moreefficacy monitoring of the control measures should be implemented. Copyright © 2020 Hinney, Cvjetković, Espigares, Vanhara, Waehner, Ruttkowski, Selista, Sperling and Joachim.Bovine spongiform encephalopathy (BSE) is a prion disease in cattle and is classified into the classical type (C-BSE) and two atypical BSEs, designated as high type (H-BSE) and low type (L-BSE). These classifications are based on the electrophoretic migration of the proteinase K-resistant core (PrPres) of the disease-associated form of the prion protein (PrPd). In a previous study, we succeeded in transmitting the H-BSE prion from cattle to TgHaNSE mice overexpressing normal hamster cellular PrP (PrPC). Further, Western blot analysis demonstrated that PrPres banding patterns of the H-BSE prion were indistinguishable from those of the C-BSE prion in TgHaNSE mice. In addition, similar PrPres glycoprofiles were detected among H-, C-, and L-BSE prions in TgHaNSE mice. Therefore, to better understand atypical BSE prions after interspecies transmission, H-BSE prion transmission from TgHaNSE mice to hamsters was investigated, and the characteristics of classical and atypical BSE prions among hamsters, wild-type micelycoprofiles are considered to be key factors for BSE strain typing. However, this study also revealed that interspecies transmission could sometimes influence these characteristics. Copyright © 2020 Miyazawa, Masujin, Matsuura, Iwamaru and Okada.This study was executed to investigate the effect of supplementing three multienzyme levels (0, 0. 1, and 0.2%) with two types of diet [standard diet (SD) vs. low-density diet (LDD)] on immune response, blood hematology and biochemistry, antioxidant status, and organ histology of broilers during 1-38 days of age. A total of 216 unsexed 1-day-old Arbor Acres broiler chicks were randomly distributed, on a factorial design (2 × 3), to six treatments each with six replicates. There were six chicks per replicate. Results showed that LDD significantly decreased body weight gain (BWG) of broilers, but did not affect the European Production Efficiency Index (EPEI). Addition of multienzymes at both levels (0.1 and 0.2%) significantly increased BWG and improved EPEI, compared to the control diet. Alanine aminotransferase (ALT), aspirate aminotransferase (AST), malondialdehyde (MDA), lymphocyte, lymphocyte transformation test (LTT), and phagocyte activity (PA) were significantly higher for LDD than the SD, but eosinophil was lower. Supplementation of multienzymes significantly decreased ALT, AST, and MDA, compared to the control group, but increased packed cell volume (PCV), hemoglobin (Hgb), lymphocytes, and monocytes. Immune organs, such as spleen, thymus, and the bursa of Fabricius were significantly increased with multienzyme supplementation. It could be concluded that multienzyme supplementation at either 0.1 or 0.2% to SD or LDD improved EPEI and immune status of broiler chicks. Copyright © 2020 Attia, Al-Khalaifah, Abd El-Hamid, Al-Harthi and El-shafey.The molecular signatures of epigenetic regulation and chromatin architecture are emerging as pivotal regulators of mitochondrial function. Recent studies unveiled a complex intersection among environmental factors, epigenetic signals, and mitochondrial metabolism, ultimately leading to alterations of vascular phenotype and increased cardiovascular risk. Changing environmental conditions over the lifetime induce covalent and post-translational chemical modification of the chromatin template which sensitize the genome to establish new transcriptional programs and, hence, diverse functional states. On the other hand, metabolic alterations occurring in mitochondria affect the availability of substrates for chromatin-modifying enzymes, thus leading to maladaptive epigenetic signatures altering chromatin accessibility and gene transcription. Indeed, several components of the epigenetic machinery require intermediates of cellular metabolism (ATP, AcCoA, NADH, α-ketoglutarate) for enzymatic function. In the present review, we describe the emerging role of epigenetic modifications as fine tuners of gene transcription in mitochondrial dysfunction and vascular disease. Specifically, the following aspects are described in detail (i) mitochondria and vascular function, (ii) mitochondrial ROS, (iii) epigenetic regulation of mitochondrial function; (iv) the role of mitochondrial metabolites as key effectors for chromatin-modifying enzymes; (v) epigenetic therapies. Understanding epigenetic routes may pave the way for new approaches to develop personalized therapies to prevent mitochondrial insufficiency and its complications. Copyright © 2020 Mohammed, Ambrosini, Lüscher, Paneni and Costantino.Deep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers common imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound and major anatomical structures of interest (ventricles, atria, and vessels). In addition, a summary of publicly available cardiac image datasets and code repositories are included to provide a base for encouraging reproducible research. https://www.selleckchem.com/products/hg106.html Finally, we discuss the challenges and limitations with current deep learning-based approaches (scarcity of labels, model generalizability across different domains, interpretability) and suggest potential directions for future research. Copyright © 2020 Chen, Qin, Qiu, Tarroni, Duan, Bai and Rueckert.