It is well documented that ancient sickle harvesting led to tough rachises, but the other seed dispersal properties in crop progenitors are rarely discussed. The first steps toward domestication are evolutionary responses for the recruitment of humans as dispersers. Seed dispersal-based mutualism evolved from heavy human herbivory or seed predation. Plants that evolved traits to support human-mediated seed dispersal express greater fitness in increasingly anthropogenic ecosystems. The loss of dormancy, reduction in seed coat thickness, increased seed size, pericarp density, and sugar concentration all led to more-focused seed dispersal through seed saving and sowing. Some of the earliest plants to evolve domestication traits had weak seed dispersal processes in the wild, often due to the extinction of animal dispersers or short-distance mechanical dispersal. Hormonal pathways often converge on transcriptional repressors that can be degraded by the proteasome to initiate a response. We wish to draw attention to developments in a less-explored proteolytic branch called 'limited proteolysis' that, in addition to the classical proteolytic pathways, seems to regulate auxin and ethylene signaling. Lignin enhances the mechanical strength of plants and enables their intrinsic water transport. Dendrochronological, wood anatomical, and plant physiological evidence now suggests that the degree of lignin deposition is constrained by low temperature. Placing these findings in an ecological context implies rethinking of the global treeline position. Microorganisms in association with roots can protect plants against soil-borne diseases. https://www.selleckchem.com/products/nmda-n-methyl-d-aspartic-acid.html A recent study mechanistically revealed how root endophytes act as a second microbiological layer of plant defense. Integrating ecological concepts with principles of plant pathology provides an innovative way to manipulate and engineer beneficial plant microbiomes. Although it is known that novel genes facilitated plant colonization of land, the evolutionary origin of these genes remains largely unclear. A recent study by Cheng et al. suggests that some key genes related to plant development and stress responses were acquired from soil bacteria during the early evolution of land plants. Phage cocktails have emerged as precision tools for controlling plant bacterial diseases. Wang et al. now report that phage cocktails decreased the occurrence of tomato bacterial wilt disease efficiently by infecting and destroying bacterial pathogens, selecting phage-resistant but slow-growing pathogen strains, and fostering bacterial species that are antagonistic to the pathogens. Published by Elsevier Ltd.Integrin αIIbβ3 is a predominant type of integrin abundantly expressed on the surface of platelets and its activation regulates the process of thrombosis. Talin and kindlin are cytoplasmic proteins that bind to integrin and modulate its affinity for extracellular ligands. Although the molecular details of talin-mediated integrin activation are known, the mechanism of kindlin involvement in this process remains elusive. Here, we demonstrate that the interplay between talin and kindlin promotes integrin activation. Our all-atomic molecular dynamics simulations on complete transmembrane and cytoplasmic domains of integrin αIIbβ3, talin1 F2/F3 subdomains, and the kindlin2 FERM domain in an explicit lipid-water environment over a microsecond timescale unraveled the role of kindlin as an enhancer of the talin interaction with the membrane proximal region of β-integrin. The cooperation of kindlin with talin results in a complete disruption of salt bridges between R995 on αIIb and D723/E726 on β3. Furthermore, kindlin modifies the molecular mechanisms of inside-out activation by decreasing the crossing angle between transmembrane helices of integrin αIIbβ3, which eventually results in parallelization of integrin dimer. In addition, our control simulation featuring integrin in complex with kindlin reveals that kindlin binding is not sufficient for unclasping the inner-membrane and outer-membrane interactions of integrin dimer, thus ruling out the possibility of solitary action of kindlin in integrin activation. The plasma membrane and the underlying cytoskeletal cortex constitute active platforms for a variety of cellular processes. Recent work has shown that the remodeling acto-myosin network modifies local membrane organization, but the molecular details are only partly understood because of difficulties with experimentally accessing the relevant time and length scales. Here, we use interferometric scattering microscopy to investigate a minimal acto-myosin network linked to a supported lipid bilayer membrane. Using the magnitude of the interferometric contrast, which is proportional to molecular mass, and fast acquisition rates, we detect and image individual membrane-attached actin filaments diffusing within the acto-myosin network and follow individual myosin II filament dynamics. We quantify myosin II filament dwell times and processivity as functions of ATP concentration, providing experimental evidence for the predicted ensemble behavior of myosin head domains. Our results show how decreasing ATP concentrations lead to both increasing dwell times of individual myosin II filaments and a global change from a remodeling to a contractile state of the acto-myosin network. The folding reaction of a stable monomeric variant of Cu/Zn superoxide dismutase (mSOD1), an enzyme responsible for the conversion of superoxide free radicals into hydrogen peroxide and oxygen, is known to be among the slowest folding processes that adhere to two-state behavior. The long lifetime, ∼10 s, of the unfolded state presents ample opportunities for the polypeptide chain to transiently sample nonnative structures before the formation of the productive folding transition state. We recently observed the formation of a nonnative structure in a peptide model of the C-terminus of SOD1, a sequence that might serve as a potential source of internal chain friction-limited folding. To test for friction-limited folding, we performed a comprehensive thermodynamic and kinetic analysis of the folding mechanism of mSOD1 in the presence of the viscogens glycerol and glucose. Using a, to our knowledge, novel analysis of the folding reactions, we found the disulfide-reduced form of the protein that exposes the C-terminal sequence, but not its disulfide-oxidized counterpart that protects it, experiences internal chain friction during folding.