Gram-negative bacteria are covered by both an inner cytoplasmic membrane (IM) and an outer membrane (OM). Antimicrobial peptides (AMPs) must first permeate through the OM and cell wall before attacking the IM to cause cytoplasmic leakage and kill the bacteria. The bacterial OM is an asymmetric bilayer with the outer leaflet primarily composed of lipopolysaccharides (LPSs) and the inner leaflet composed of phospholipids (PLs). Two cationic α-helical AMPs were designed to target Gram-negative bacteria, a full peptide G(IIKK)3I-NH2 (G3), and a hydrophobic lipopeptide C8-G(IIKK)2I-NH2 (C8G2, with C8 denoting the octanoyl chain). LPS dominates OM functions as the first line of defense against antibiotics, thereby reducing drug susceptibility. This work explores how the two AMPs interact with LPS through several carefully chosen OM models that facilitated measurements from solid-state nuclear magnetic resonance (ss-NMR), small-angle neutron scattering (SANS), and neutron reflectivity (NR). The results revealed that G3 molecules bound preferably to the LPS head region and functioned as bridge molecules to reassemble the dislocated lipids into bilayer stacks. In contrast, C8G2 lipopeptides could quickly penetrate into the central region of the OM to cause direct removal of some membrane lipids. Different structural disruptions implicated different antimicrobial efficacies from these AMPs. The demonstration of the structural features underlying different susceptibilities of the OM to AMPs offers a useful route for the future development of strain-specific AMPs against antimicrobial-resistant pathogens.The multiple-metal-nanoparticle tagging strategy has generally been applied to the multiplexed detection of multiple analytes of interest such as microRNAs (miRNAs). Herein, it was used for the first time to improve both the specificity and sensitivity of a novel mass spectroscopic platform for miRNA detection. The mass spectroscopic platform was developed through the integration of the ligation reaction, hybridization chain reaction amplification, multiple-metal-nanoparticle tagging, and inductively coupled plasma mass spectrometry. The high specificity resulted from the adoption of the ligation reaction is further enhanced by the multiple-metal-nanoparticle tagging strategy. The combination of hybridization chain reaction amplification and metal nanoparticle tagging endows the proposed platform with the feature of high sensitivity. The proposed mass spectrometric platform achieved quite satisfactory quantitative results for Let-7a in real-world cell line samples with accuracy comparable to that of the real-time quantitative reverse-transcriptase polymerase chain reaction method. Its limit of detection and limit of quantification for Let-7a were experimentally determined to be about 0.5 and 10 fM, respectively. Furthermore, due to the unique way of utilizing the multiple-metal-nanoparticle tagging strategy, the proposed platform can unambiguously discriminate between the target miRNA and nontarget ones with single-nucleotide polymorphisms based on their response patterns defined by the relative mass spectral intensities among the multiple tagged metal elements and can also provide location information of the mismatched bases. Its unique advantages over conventional miRNA detection methods make the proposed platform a promising and alternative tool in the fields of clinical diagnosis and biomedical research.A dielectric medium containing noncentrosymmetric domains can exhibit piezoelectric and second-harmonic generation (SHG) responses when an electric field is applied. Since many crystalline biopolymers have noncentrosymmetric structures, there has been a great deal of interest in exploiting their piezoelectric and SHG responses for electromechanical and electro-optic devices, especially owing to their advantages such as biocompatibility and low density. However, exact mechanisms or origins of such polarization responses of crystalline biopolymers remain elusive due to the convolution of responses from multiple domains with varying degrees of structural disorder or difficulty of ensuring the unidirectional alignment of noncentrosymmetric domains. In this study, we investigate the polarization responses of a noncentrosymmetric crystalline biopolymer, namely, unidirectionally aligned β-chitin crystals interspersed in the amorphous protein matrix, which can be obtained naturally from tubeworm Lamellibrachia satsuma (LS) tube. The mechanisms governing polarization responses in different dynamic regimes covering optical (>1013 Hz), acoustic/ultrasonic (103-105 Hz), and low (10-2-102 Hz) frequencies are explained. Relationships between the polarization responses dominant in different frequencies are addressed. Also, electromechanical coupling responses, including piezoelectricity of the LS tube, are quantitatively discussed. The findings of this study can be applicable to other noncentrosymmetric crystalline biopolymers, elucidating their polarization responses.Metals are partners for an estimated one-third of the proteome and vary in complexity from mononuclear centers to organometallic cofactors. Vitamin B12 or cobalamin represents the epitome of this complexity and is the product of an assembly line comprising some 30 enzymes. Unable to biosynthesize cobalamin, mammals rely on dietary provision of this essential cofactor, which is needed by just two enzymes, one each in the cytoplasm (methionine synthase) and the mitochondrion (methylmalonyl-CoA mutase). Brilliant clinical genetics studies on patients with inborn errors of cobalamin metabolism spanning several decades had identified at least seven genetic loci in addition to the two encoding B12 enzymes. https://www.selleckchem.com/ While cells are known to house a cadre of chaperones dedicated to metal trafficking pathways that contain metal reactivity and confer targeting specificity, the seemingly supernumerary chaperones in the B12 pathway had raised obvious questions as to the rationale for their existence.With the discovery of the genen and mobilization from low- to high-affinity and low- to high-coordination-number sites, which in turn are regulated by protein dynamics that constructs ergonomic cofactor binding pockets. While these B12 lessons might be broadly relevant to other metal trafficking pathways, much remains to be learned. This Account concludes by identifying some of the major gaps and challenges that are needed to complete our understanding of B12 trafficking.