https://www.selleckchem.com/products/terephthalic-acid.html ividuals, but may underlie different neuronal mechanisms with the final common pathway of perceived pain reduction. Mendelian randomization (MR) has been widely applied to causal inference in medical research. It uses genetic variants as instrumental variables (IVs) to investigate putative causal relationship between an exposure and an outcome. Traditional MR methods have mainly focussed on a two-sample setting in which IV-exposure association study and IV-outcome association study are independent. However, it is not uncommon that participants from the two studies fully overlap (one-sample) or partly overlap (overlapping-sample). We proposed a Bayesian method that is applicable to all the three sample settings. In essence, we converted a two- or overlapping- sample MR to a one-sample MR where data were partly unmeasured. Assume that all study individuals were drawn from the same population and unmeasured data were missing at random. Then the missing data were treated au pair with the model parameters as unknown quantities, and thus, were imputed iteratively conditioning on the observed data and estimated parameters usi- sample scenarios. Given the nature of Bayesian inference, it can be easily extended to more complex MR analysis in medical research. Our model offers the flexibility of being applicable to any of the sample settings. It is an important addition to the MR literature which has restricted to one- or two- sample scenarios. Given the nature of Bayesian inference, it can be easily extended to more complex MR analysis in medical research. Diabetes mellitus type 2 (DM) may impede immune responses in tuberculosis (TB) and thus contribute to enhanced disease severity. In this study, we aimed to evaluate DM-mediated alterations in clinical, radiological and immunological outcomes in TB disease. Newly diagnosed pulmonary TB patients with or without DM (TB nā€‰=ā€‰40; TB-DM nā€‰=ā€‰40) were recruited in Dhaka, B