https://www.selleckchem.com/products/tas-120.html Aims Hypoglycemia is associated with increased reactive oxygen species (ROS) production and vascular events. We have previously reported that low-glucose (LG) conditions induce mitochondrial ROS (mtROS) production in aortic endothelial cells (ECs). However, the mechanism by which hypoglycemia promotes diabetic retinopathy (DR) is unclear. Blood-retinal barrier (BRB) disruption occurs in the early stages of DR. We hypothesized that the mechanisms underlying hypoglycemia-induced DR are associated with BRB breakdown due to mtROS generation during hypoglycemia. Here, we aimed to determine whether hypoglycemia exacerbated mtROS production and induced BRB disruption. Results We observed that hypoglycemia induced mtROS production by increasing fatty acid oxidation (FAO), which was suppressed by overexpression of mitochondrial-specific manganese superoxide dismutase (MnSOD) in retinal ECs. Furthermore, FAO blockade decreased the hypoglycemia-induced mtROS production. Recurrent hypoglycemia increased albumin leak in diabetic mice retina, which was suppressed in diabetic vascular endothelial cell-specific MnSOD transgenic (eMnSOD-Tg) mice. Pharmacological FAO blockade also reduced mtROS production, reduced vascular endothelial growth factor (VEGF) production during hypoglycemia, and prevented retinal vascular permeability in diabetic mice. MnSOD overexpression or carnitine palmitoyltransferase I (CPT1) blockade suppressed vascular endothelial-cadherin phosphorylation under LG in retinal ECs. Innovation and Conclusion Reduction of mtROS and VEGF production via pharmacological FAO and/or CPT1 blockade may prevent hypoglycemia-induced worsening of DR.The matching law describes the allocation of behavior over a wide range of settings, including laboratory experimental chambers, forest foraging patches, sports arenas, and board games. Interestingly, matching persists in settings in which economic analyses predict quite different di