https://www.selleckchem.com/products/nf-kb-activator-1.html Conclusions In patients receiving EPBD, dilatation duration less then 3 minutes, lower CBD diameter, and younger age were independent risk factors of PEP.Summary Reprogramming autologous adult cells to pluripotent cells allows for relatively safe cell replacement therapy. This can be achieved by nuclear transfer, cell fusion, or induced pluripotent stem cell technology However, the epigenetic memory of the cell is considered as a great challenge facing the complete reprograming of cells by these methods. Introducing oocyte-specific factors into differentiated cells may present a promising approach by mimicking cellular reprogramming during fertilization. Methods Human bone marrow mesenchymal stromal cells (hBM-MSCs) were cultured with different concentrations of human metaphase II (M II) oocyte extract (0.1, 1, 5, 10, 30 ng/μl). Reprogramming was assessed at various exposure times (1, 4, 7 days). Cells were tested for their proliferation rate, morphological changes, expression of pluripotency markers, expression of mesenchymal to epithelial transition markers, and mitochondrial rejuvenation. (mitochondrial localization, morphological changes, bioenergetics, transmembrane potential, and levels of reactive oxygen species, ROS). Results Treatment of human BM-MSCs with 10 ng/μl oocyte extract resulted in increased cell proliferation, which was associated with the upregulation of the pluripotency genes OCT-4, NANOG, and SOX-2 and a concomitant downregulation of mesenchymal-specific genes. MSCs exhibited small, immature round mitochondria with few swollen cristae localized proximal to the cell nucleus. This was accompanied by morphological cell changes, a metabolic shift towards oxidative phosphorylation, a high mitochondrial membrane potential, and increased ROS production. Conclusion These data show that treatment with 10 ng/μl human MII-phase oocyte extract induced genetic and mitochondrial reprogramming of hu