https://www.selleckchem.com/products/2,4-thiazolidinedione.html Radiotherapy has a high cure rate for early nasopharyngeal carcinoma(NPC). However, the radiation resistance of poorly differentiated NPC cells impacts the effectiveness of treatment of early-stage NPC patients. Here, we explored the relationship between Ras-related C3 botulinum toxin substrate 1(Rac1) expression and NPC radiosensitivity. In vitro and in vivo studies revealed that upregulation of Rac1, when combined with X-ray treatment, increased growth inhibition and induced remarkable morphological changes and apoptosis in CNE2 cells. Furthermore, rupturing of the cell and nuclear membranes, degeneration of the cristae and significant swelling of the mitochondria were observed, which were consistent with the high apoptotic rate. The Rac1(+) cells exhibited approximately 50% more migration compared with that of the NC and Rac1(-) cells. The overexpression of Rac1 can increase the radiation sensitivity of NPC CNE2 cells, and the mechanism may be closely related to the oxidative damage of mitochondria. Rac1 might be a potential target for radiosensitization in poorly differentiated NPC.Nifekalant is a class III antiarrhythmic drug, and its major adverse effect is prolongation of the QT interval. This study analysed data generated from a pharmacokinetic (PK) study to develop a population PK/pharmacodynamics (PD) model for describing the relationship between plasma concentrations and prolongation of the QT interval over time following intravenous administration of nifekalant. This open-labelled, phase I clinical study comprised two dose level groups of eight healthy Chinese volunteers. Concentrations of nifekalant in plasma samples collected at set time-points were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. A PK/PD model was constructed using a non-linear mixed-effects approach (Phoenix NLME 8.1). Furthermore, demographic covariates of the model were investigated