Herein, we report an efficient strategy for the rapid construction of 1,4-oxazines starting from simple α-amino ketones and diazo pyruvates under mild reaction conditions. This transformation is efficiently catalyzed by RuCl3 through a tandem N-H insertion/cyclization sequence via an enol formation. This reaction shows broad functional group tolerance, and the resulting 1,4-oxazine products show promising anticancer activities toward HCT116.Supportive stromal cells of mesenchymal origins regulate vascular morphogenesis in developmental, pathological, and regenerative contexts, contributing to vessel formation, maturation, and long-term stability, in part via the secretion of bioactive molecules. In this work, we adapted a microfluidic lab-on-a-chip system that enables the formation and perfusion of microvascular capillary beds with connections to arteriole-scale endothelialized channels to explore how stromal cell (SC) identity influences endothelial cell (EC) morphogenesis. https://www.selleckchem.com/products/ro-3306.html We compared and contrasted lung fibroblasts (LFs), dermal fibroblasts (DFs), and bone marrow-derived mesenchymal stem cells (MSCs) for their abilities to support endothelial morphogenesis and subsequent perfusion of microvascular networks formed in fibrin hydrogels within the microfluidic device. We demonstrated that while all 3 SC types supported EC morphogenesis, LFs in particular resulted in microvascular morphologies with the highest total network length, vessel diameter, and vessel interconnectivity across a range of SC-EC ratio and density conditions. Not only did LFs support robust vascular morphology, but also, they were the only SC type to support functional perfusion of the resultant capillary beds. Lastly, we identified heightened traction stress produced by LFs as a possible mechanism by which LFs enhance endothelial morphogenesis in 3D compared to other SC types examined. This study provides a unique comparison of three different SC types and their role in supporting the formation of microvasculature that could provide insights for the choice of cells for vascular cell-based therapies and the regulation of tissue-specific vasculature.Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins' (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1  1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.Twin boundaries (TBs), as one kind of crystal defect, have often been observed in various material systems, and the (111)/[110] TB has been verified to show weak phonon scattering. However, it's still not clear whether other TBs can show similar thermal properties to the (111)/[110] TB. To solve this issue, in this work, we perform a systematic study of heat transport across six kinds of twin boundaries in diamond, including the (111)/[110], (221)/[110], (331)/[110], (113)/[110], (112)/[110] and (310)/[001] TBs, by both molecular dynamics simulations and first-principles calculations. The results indicate that the thermal boundary resistance of the six TBs ranges from 1.01 × 10-11 to 6.35 × 10-10 m2 K W-1; specifically, the (111)/[110] TB shows much weaker phonon scattering than the others. The different phonon scattering at TBs mainly depends on the transmission coefficients across the twin boundaries for boundaries with the same symmetry, as well as the combined action of group velocity and phonon mean free path. Furthermore, by analyzing the structural properties of TBs, it can be observed that TB thermal resistance varies significantly with the TB structure, and is strongly correlated with TB energy and bond difference parameter. Our findings will provide useful guidelines for designing efficient thermoelectric and thermal management materials based on phonon-TB scattering.Doping engineering is considered an effective way to improve the electrocatalytic water splitting performance of catalysts. In this paper, P-doped Ni3S2/NF was prepared by Ar plasma-assisted chemical vapor deposition, where the P dopant was efficiently introduced into Ni3S2/NF under the assistance of Ar plasma. Meanwhile, numerous vacancies were generated due to plasma bombardment. In the doping process, the P dopants replace the S vacancies, which contributes to the strong bonding between the P dopants and Ni3S2. Due to the synergistic effect of the P dopants and S vacancies, the Sv-Ni3S2-xPx-4 catalyst has low HER and OER overpotentials of 89 mV and 216 mV at 10 mA cm-2, with a lower impedance value and good stability. The present work shows a facile route to introduce dopants and vacancies into catalyst materials for adding active sites, eventually improving their electrocatalytic performance.MicroRNA detection is currently a crucial analytical chemistry challenge almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection.