Further investigation revealed that miR-8 promotes cell growth independent of insulin/IGF signaling. Taken together, these experiments show that miR-8 is highly expressed in the CA and exerts its positive effects on cell growth and JH biosynthesis. The miRNAs data in the ring gland also provide a useful resource to study how miRNAs collaboratively regulate hormone synthesis in D. melanogaster.Cuticular proteins analogous to peritrophin 3 (CPAP3)-type cuticle proteins constitute a family of proteins with three chitin-binding domains (CBDs) that play an important role in cuticle formation by associating with chitin. In our previous study, we identified CPAP3-type cuticle proteins in the silkworm genome, of which we characterized CPAP3-A2 (BmCBP1), a protein highly expressed in the epidermis. In this study, to elucidate the digestion mechanism of CPAP3-type cuticle proteins, we incubated CPAP3-A2 with molting fluid in vitro and found that its hydrolysis, which was inhibited by serine and cysteine protease inhibitors, produced two major bands with a molecular weight of approximately 22 kD and 11 kD. A trypsin-type serine protease, p37k, was presumed to be responsible for hydrolyzing CPAP3-A2 based on liquid chromatography-tandem mass spectrometry analysis of naturally purified molting fluid. To verify this, p37k was subsequently expressed in Sf9 cells using the Bac-to-Bac baculovirus expression system. In its active form, the recombinant protease could successfully hydrolyze CPAP3-A2. Finally, we analyzed the CPAP3-A2 molting fluid digestion site. When arginine 169 of CPAP3-A2 was mutated to alanine, a weaker hydrolysis of mutant CPAP3-A2 was observed compared to that of normal CPAP3-A2. Collectively, we identified a trypsin-type serine protease that is involved in the degradation of CPAP3-type cuticle proteins, including CPAP3-A2, suggesting that this protease plays an important role during molting in Bombyx mori. These findings provide the basis for further elucidation of the mechanisms underlying insect molting and metamorphosis.Peak alpha frequency (PAF) reduces during cutaneous pain, but no studies have investigated PAF during movement-related muscle pain. Whether high-pain sensitive (HPS) individuals exhibit a more pronounced PAF response to pain than low-pain sensitive (LPS) individuals is unclear. As a pain model, twenty-four participants received nerve growth factor injections into a wrist extensor muscle at Day 0, Day 2, and Day 4. At Day 4, a subgroup of twelve participants also undertook eccentric wrist exercise to induce additional pain. Pain numerical rating scale (NRS) scores and electroencephalography were recorded at Day 0 (before injection), Day 4, and Day 6 for 3 minutes (eyes closed) with wrist at rest (Resting-state) and extension (Contraction-state). The average pain NRS scores in contraction-state across Days were used to divide participants into HPS (NRS-scoresā‰„2) and LPS groups. PAF was calculated by frequency decomposition of electroencephalographic recordings. Compared with Day 0, contraction NRS-scores only increased in HPS-group at Day 4 and Day 6 (P less then .001). PAF in Contraction-state decreased in both groups at Day 6 compared with Day 0 (P = .011). Across days, HPS-group showed faster PAF than LPS-group during Resting-state and Contraction-state (P less then .04). Average pain NRS-scores across days during Contraction-states correlated with PAF at Day 0 (P = .012). Pain NRS-scores were associated with PAF during Contraction-state at Day 4 and Day 6 (P less then .05). PERSPECTIVE PAF was slowed during long-lasting movement-related pain in both groups, suggesting a widespread change in cortical excitability independent of the pain sensitivity. Moreover, HPS individuals showed faster PAF than LPS individuals during muscle pain, which may reflect a different cognitive, emotional, or attentional response to muscle pain among individuals.While mast cells (MCs) are previously well-known as a pathological indicator of pain, their role in alleviating pain is recently emerged in acupuncture research. Thus, this study systematically reviews the role of MC in acupuncture analgesia. Animal studies on MC changes associated with the acupuncture analgesia were searched in PubMed and EMBASE. The MC number, degranulation ratio and pain threshold changes were collected as outcome measures for meta-analyses. Twenty studies were included with 13 suitable for meta-analysis, most with a moderate risk of bias. A significant MC degranulation after acupuncture was indicated in the normal and was significantly higher in the pain model. In the subgroup analysis by acupuncture type, manual (MA) and electrical (EA, each P less then .00001) but not sham acupuncture had significant MC degranulation. Meta-regression revealed the linear proportionality between MC degranulation and acupuncture-induced analgesia (P less then .001), which was found essential in MA (P less then .00001), but not in EA (P = .45). MC mediators, such as adenosine and histamine, are involved in its mechanism. Taken together, skin MC is an essential factor for acupuncture-induced analgesia, which reveals a new aspect of MC as a pain alleviator. However, its molecular mechanism requires further study. PERSPECTIVE This systematic review synthesizes data from studies that examined the contribution of skin MC in acupuncture analgesia. Current reports suggest a new role for skin MC and its mediators in pain alleviation and explain a peripheral mechanism of acupuncture analgesia, with suggesting the need of further studies to confirm these findings.Treatment outcomes for migraine and other chronic headache and pain conditions typically demonstrate modest results. A greater understanding of underlying pain mechanisms may better inform treatments and improve outcomes. https://www.selleckchem.com/products/plx51107.html Increased GABA+ has been identified in recent studies of migraine, however, it is unclear if this is present in other headache, and pain conditions. We primarily investigated GABA+ levels in the posterior cingulate gyrus (PCG) of people with migraine, whiplash-headache and low back pain compared to age- and sex-matched controls, GABA+ levels in the anterior cingulate cortex (ACC) and thalamus formed secondary aims. Using a cross-sectional design, we studied people with migraine, whiplash-headache or low back pain (n = 56) and compared them with a pool of age- and sex-matched controls (n = 22). We used spectral-edited magnetic resonance spectroscopy at 3T (MEGA-PRESS) to determine levels of GABA+ in the PCG, ACC and thalamus. PCG GABA+ levels were significantly higher in people with migraine and low back pain compared with controls (eg, migraine 4.