https://www.selleckchem.com/products/ly2606368.html The COVID-ABS model was implemented in Python programming language, with source code publicly available. The model can be easily extended to other societies by changing the input parameters, as well as allowing the creation of a multitude of other scenarios. Therefore, it is a useful tool to assist politicians and health authorities to plan their actions against the COVID-19 epidemic.COVID-19 pandemic has reshaped our world in a timescale much shorter than what we can understand. Particularities of SARS-CoV-2, such as its persistence in surfaces and the lack of a curative treatment or vaccine against COVID-19, have pushed authorities to apply restrictive policies to control its spreading. As data drove most of the decisions made in this global contingency, their quality is a critical variable for decision-making actors, and therefore should be carefully curated. In this work, we analyze the sources of error in typically reported epidemiological variables and usual tests used for diagnosis, and their impact on our understanding of COVID-19 spreading dynamics. We address the existence of different delays in the report of new cases, induced by the incubation time of the virus and testing-diagnosis time gaps, and other error sources related to the sensitivity/specificity of the tests used to diagnose COVID-19. Using a statistically-based algorithm, we perform a temporal reclassification of cases to avoid delay-induced errors, building up new epidemiologic curves centered in the day where the contagion effectively occurred. We also statistically enhance the robustness behind the discharge/recovery clinical criteria in the absence of a direct test, which is typically the case of non-first world countries, where the limited testing capabilities are fully dedicated to the evaluation of new cases. Finally, we applied our methodology to assess the evolution of the pandemic in Chile through the Effective Reproduction Number R