https://www.selleckchem.com/products/fluzoparib.html The stromal microenvironment in the thymus is essential for generating a functional T cell repertoire. Thymic epithelial cells (TECs) are numerically and phenotypically one of the most prominent stromal cell types in the thymus, and have been recognized as one of most unusual cell types in the body by virtue of their unique functions in the course of the positive and negative selection of developing T cells. In addition to TECs, there are other stromal cell types of mesenchymal origin, such as fibroblasts and endothelial cells. These mesenchymal stromal cells are not only components of the parenchymal and vascular architecture, but also have a pivotal role in controlling TEC development, although their functions have been less extensively explored than TECs. Here, we review both the historical studies on and recent advances in our understanding of the contribution of such non-TEC stromal cells to thymic organogenesis and T cell development. In particular, we highlight the recently discovered functional effect of thymic fibroblasts on T cell repertoire selection.STAT3 gain-of-function (GOF) mutations can be responsible for an incomplete phenotype mainly characterized by hematological autoimmunity, even in the absence of other organ autoimmunity, growth impairment, or severe infections. We hereby report a case with an incomplete form of STAT3 GOF intensified by a concomitant hereditary hematological disease, which misleads the diagnosis. The patient presented with lymphadenopathy, splenomegaly, hypogammaglobulinemia, and severe autoimmune hemolytic anemia (AIHA) with critical complications, including stroke. A Primary Immune Regulatory Disorders (PIRD) was suspected, and molecular analysis revealed a de novo STAT3 gain-of-function mutation. The response to multiple immune suppressive treatments was ineffective, and further investigations revealed a spectrin deficiency. Ultimately, hematopoietic stem cell transplanta