Our research culminated in the discovery of 25, which we propose as the preferred biochemical tool to interrogate cellular responses to GSTO1-1 inhibition.Using wave function (WF) in density functional theory (DFT) embedding methods provides a framework for performing localized, high-accuracy WF calculations on a system, while not incurring the full computational cost of the WF calculation on the full system. To effectively partition a system into localized WF and DFT subsystems, we utilize the Huzinaga level-shift projection operator within an absolutely localized basis. In this work, we study the ability of the absolutely localized Huzinaga level-shift projection operator method to study complex WF and DFT partitions, including partitions between multiple covalent bonds, a double bond, and transition-metal-ligand bonds. We find that our methodology can accurately describe all of these complex partitions. Additionally, we study the robustness of this method with respect to the WF method, specifically where the embedded systems were described using a multiconfigurational WF method. https://www.selleckchem.com/products/tacrine-hcl.html We found that the method is systematically improvable with respect to both the number of atoms in the WF region and the size of the basis set used, with energy errors less than 1 kcal/mol. Additionally, we calculated the adsorption energy of H2 to a model of an iron metal-organic framework (Fe-MOF-74) to within 1 kcal/mol compared to CASPT2 calculations performed on the full model while incurring only a small fraction of the full computational cost. This work demonstrates that the absolutely localized Huzinaga level-shift projection operator method is applicable to very complex systems with difficult electronic structures.Structure-based stabilization of protein-protein interactions (PPIs) is a promising strategy for drug discovery. However, this approach has mainly focused on the stabilization of native PPIs, and non-native PPIs have received little consideration. Here, we identified a non-native interaction interface on the three-dimensional dimeric structure of the N-terminal domain of the MERS-CoV nucleocapsid protein (MERS-CoV N-NTD). The interface formed a conserved hydrophobic cavity suitable for targeted drug screening. By considering the hydrophobic complementarity during the virtual screening step, we identified 5-benzyloxygramine as a new N protein PPI orthosteric stabilizer that exhibits both antiviral and N-NTD protein-stabilizing activities. X-ray crystallography and small-angle X-ray scattering showed that 5-benzyloxygramine stabilizes the N-NTD dimers through simultaneous hydrophobic interactions with both partners, resulting in abnormal N protein oligomerization that was further confirmed in the cell. This unique approach based on the identification and stabilization of non-native PPIs of N protein could be applied toward drug discovery against CoV diseases.Selective inhibitors of gut bacterial β-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (2-7) for the GUSs. Complex structures of Ruminococcus gnavus GUS with 2-7 explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity. N1 of uronic isofagomine (2) made strong electrostatic interactions with two catalytic glutamates of GUSs, resulting in the most potent inhibition (Ki ≥ 11 nM). C6-propyl analogue of 2 (6) displayed 700-fold selectivity for opportunistic bacterial GUSs (Ki = 74 nM for E. coli GUS and 51.8 μM for RgGUS). In comparison with 2, there was 200-fold enhancement in the selectivity, which was attributed to differential interactions between the propyl group and loop 5 residues of the GUSs. The results provide useful insights to develop potent and selective inhibitors for undesired GUSs.There is experimental evidence that the astaxanthin, betanin, and epigallocatechin-3-gallate (EGCG) compounds slow down the aggregation kinetics and the toxicity of the amyloid-β (Aβ) peptide. How these inhibitors affect the self-assembly at the atomic level remains elusive. To address this issue, we have performed for each ligand atomistic replica exchange molecular dynamic (REMD) simulations in an explicit solvent of the Aβ11-40 trimer from the U-shape conformation and MD simulations starting from Aβ1-40 dimer and tetramer structures characterized by different intra- and interpeptide conformations. We find that the three ligands have similar binding free energies on small Aβ40 oligomers but very distinct transient binding sites that will affect the aggregation of larger assemblies and fibril elongation of the Aβ40 peptide.Intracellular/extracellular protein aggregation is linked to a variety of neurodegenerative diseases. Current research focuses on identifying antiamyloidogenic small molecules to inhibit such protein aggregation and associated cytotoxicity. We have recently demonstrated that transforming these antiamyloidogenic small molecules into nanoparticle forms can greatly improve their performance, and biocompatible/biodegradable formulation of such nanoparticles is critical for therapeutic applications. Here, we report polylactide (PL)-based biodegradable nanoparticles for improved neuroprotection against polyglutamine (polyQ) aggregation that is responsible for Huntington's disease. PL is terminated with an antiamyloidogenic trehalose molecule or the neurotransmitter dopamine, and the resultant nanoparticle is loaded with the antiamyloidogenic catechin molecule. The self-assembled nanoparticle is ∼200 nm in size and enters into the neuronal cell, inhibits polyQ aggregation, lowers oxidative stress, and enhances cell proliferation against polyQ aggregates. This biodegradable polymer can be used in nanoformulation of other reported antiamyloidogenic molecules for testing various animal models of neurodegenerative diseases.Strain-release-driven methodology is a powerful tool for accessing structural motifs, highly desirable by the pharmaceutical industry. The reactivity of spring-loaded cyclic reagents is dominated by transformations relying on their inherent electrophilic reactivity. Herein, we present a polarity-reversal strategy based on light-driven cobalt catalysis, which enables the generation of nucleophilic radicals through strain release. The applicability of this methodology is demonstrated by the design of two distinct types of reactions Giese-type addition and Co/Ni-catalyzed cross-coupling. Moreover, a series of electrochemical, spectroscopic, and kinetic experiments as well as X-ray structural analysis of the intermediate alkylcobalt(III) complex give deeper insight into the mechanism of the reaction.