BACKGROUND It is hypothesised that being a blood-feeding ectoparasite, Argulus foliaceus (Linnaeus, 1758), uses similar mechanisms for digestion and host immune evasion to those used by other haematophagous ecdysozoa, including caligid copepods (e.g. https://www.selleckchem.com/products/semaxanib-su5416.html sea louse). We recently described and characterised glands associated with the feeding appendages of A. foliaceus using histological techniques. The work described in the present study is the first undertaken with the objective of identifying and partially characterising the components secreted from these glands using a proteomic approach. METHODS Argulus foliaceus parasites were sampled from the skin of rainbow trout (Oncorhynchus mykiss), from Loch Fad on the Isle of Bute, Scotland, UK. The proteins from A. foliaceus secretory/excretory products (SEPs) were collected from the supernatant of artificial freshwater conditioned with active adult parasites (n = 5-9 per ml; n = 560 total). Proteins within the SEPs were identified and characterised using LC-ESI-MS/MS site immune evasion/induction (e.g. astacin), immunomodulation (e.g. serpin) and digestion (e.g. trypsin). CONCLUSIONS To our knowledge, the present study represents the first proteomic analysis undertaken for SEPs from any branchiuran fish louse. Here we reveal possible functional roles of A. foliaceus SEPs in digestion and immunomodulation, with a number of protein families shared with other haematophagous ectoparasites. A number of apparently unique secreted proteins were identified compared to other haematophagous ecdysozoa.BACKGROUND Lipid metabolism is pivotal for the growth of apicomplexan parasites. Lipid synthesis requires bulk carbon skeleton acyl-CoAs, the transport of which depends on the acyl-CoA binding protein (ACBP). In Neospora caninum, the causative agent of neosporosis, the FASII pathway is required for growth and pathogenicity. However, little is known about the fatty acid transport mechanism in N. caninum. METHODS We have identified a cytosolic acyl-CoA binding protein, with highly conserved amino acid residues and a typical acyl-CoA binding domain in N. caninum. The recombinant NcACBP protein was expressed to verify the binding activities of NcACBP in vitro, and the heterologous expression of NcACBP in Δacbp yeast in vivo. Lipid extraction from ΔNcACBP or the wild-type of N. caninum was analyzed by GC-MS or TLC. Furthermore, transcriptome analysis was performed to compare the gene expression in different strains. RESULTS The NcACBP recombinant protein was able to specifically bind acyl-CoA esters in vitro. A yepression of multiple genes. This study provides a foundation for elucidating the molecular mechanism of lipid metabolism in N. caninum.BACKGROUND Maintaining a proper supply of soluble histones throughout the cell cycle is important to ensure chromatin and genome stability. Following their synthesis, histones undergo a series of maturation steps to prepare them for deposition onto chromatin. RESULTS Here, we identify the lysine demethylase JMJD1B as a novel player in the maturation cascade that contributes to regulate histone provision. We find that depletion of JMJD1B increases the protein levels of the histone chaperone tNASP leading to an accumulation of newly synthesized histones H3 and H4 at early steps of the histone maturation cascade, which perturbs chromatin assembly. Furthermore, we find a high rate of JMJD1B mutations in cancer patients, and a correlation with genomic instability. CONCLUSIONS Our data support a role for JMJD1B in fine-tuning histone supply to maintain genome integrity, opening novel avenues for cancer therapeutics.The vasculature not only transports oxygenated blood, metabolites, and waste products but also serves as a conduit for hormonal communication between distant tissues. Therefore, it is important to maintain homeostasis within the vasculature. Recent studies have greatly expanded our understanding of the regulation of vasculature development and vascular-related diseases at the epigenetic level, including by protein posttranslational modifications, DNA methylation, and noncoding RNAs. Integrating epigenetic mechanisms into the pathophysiologic conceptualization of complex and multifactorial vascular-related diseases may provide promising therapeutic approaches. Several reviews have presented detailed discussions of epigenetic mechanisms not including histone methylation in vascular biology. In this review, we primarily discuss histone methylation in vascular development and maturity, and in vascular diseases.An aberrant Ascaris suum infection in a domestic dog in China in 2019 is described for the first time. This pathogen is a common roundworm of pigs with few reported cases in domestic animals. Our findings suggest a wider infection range with a possible transmission of A. suum to domestic animals that interact with humans.BACKGROUND Gastric cancer is among the most lethal human malignancies. Previous studies have identified molecular aberrations that constitute dynamic biological networks and genomic complexities of gastric tumors. However, the clinical translation of molecular-guided targeted therapy is hampered by challenges. Notably, solid tumors often harbor multiple genetic alterations, complicating the development of effective treatments. METHODS To address such challenges, we established a comprehensive dataset of molecularly annotated patient derivatives coupled with pharmacological profiles for 60 targeted agents to explore dynamic pharmacogenomic interactions in gastric cancers. RESULTS We identified lineage-specific drug sensitivities based on histopathological and molecular subclassification, including substantial sensitivities toward VEGFR and EGFR inhibition therapies in diffuse- and signet ring-type gastric tumors, respectively. We identified potential therapeutic opportunities for WNT pathway inhibitors in ALK-mutant tumors, a significant association between PIK3CA-E542K mutation and AZD5363 response, and transcriptome expression of RNF11 as a potential predictor of response to gefitinib. CONCLUSIONS Collectively, our results demonstrate the feasibility of drug screening combined with tumor molecular characterization to facilitate personalized therapeutic regimens for gastric tumors.