https://www.selleckchem.com/products/CP-690550.html Semiconductor nanoplatelets exhibit spectrally pure, directional fluorescence. To make polarized light emission accessible and the charge transport effective, nanoplatelets have to be collectively oriented in the solid state. We discovered that the collective nanoplatelets orientation in monolayers can be controlled kinetically by exploiting the solvent evaporation rate in self-assembly at liquid interfaces. Our method avoids insulating additives such as surfactants, making it ideally suited for optoelectronics. The monolayer films with controlled nanoplatelets orientation (edge-up or face-down) exhibit long-range ordering of transition dipole moments and macroscopically polarized light emission. Furthermore, we unveil that the substantial in-plane electronic coupling between nanoplatelets enables charge transport through a single nanoplatelets monolayer, with an efficiency that strongly depends on the orientation of the nanoplatelets. The ability to kinetically control the assembly of nanoplatelets into ordered monolayers with tunable optical and electronic properties paves the way for new applications in optoelectronic devices.Human pancreatic cancer is one of the most aggressive types of cancer, with a high mortality rate. Due to the high tolerance of such cancer cells to nutrient starvation conditions, they can survive in a hypovascular tumor microenvironment. In this study, the dichloromethane extract of the roots of Ferula hezarlalehzarica showed potent preferential cytotoxic activity with a PC50 value of 0.78 μg/mL. Phytochemical investigation of this extract led to the isolation of 18 compounds, including one new sesquiterpenoid (6) and one new monoterpenoid (18). All isolated compounds were evaluated for their preferential cytotoxicity against PANC-1 human pancreatic cancer cells by employing an antiausterity strategy. Among them, ferutinin (2) was identified as the most active compound, with a PC50 value