N-glycosylated proteins produced in human embryonic kidney 293 (HEK 293) cells often carry terminal N-acetylgalactosamine (GalNAc) and only low levels of sialylation. On therapeutic proteins, such N-glycans often trigger rapid clearance from the patient bloodstream via efficient binding to asialoglycoprotein receptor (ASGP-R) and mannose receptor (MR). This currently limits the use of HEK 293 cells for therapeutic protein production. To eliminate terminal GalNAc, we knocked-out GalNAc transferases B4GALNT3 and B4GALNT4 by CRISPR/Cas9 in FreeStyle 293-F cells. The resulting cell line produced a coagulation factor VII-albumin fusion protein without GalNAc but with increased sialylation. This glyco-engineered protein bound less efficiently to both the ASGP-R and MR in vitro and it showed improved recovery, terminal half-life and area under the curve in pharmacokinetic rat experiments. By overexpressing sialyltransferases ST6GAL1 and ST3GAL6 in B4GALNT3 and B4GALNT4 knock-out cells, we further increased factor VII-albumin sialylation; for ST6GAL1 even to the level of human plasma-derived factor VII. https://www.selleckchem.com/products/pu-h71.html Simultaneous knock-out of B4GALNT3 and B4GALNT4, and overexpression of ST6GAL1 further lowered factor VII-albumin binding to ASGP-R and MR. This novel glyco-engineered cell line is well-suited for the production of factor VII-albumin and presumably other therapeutic proteins with fully human N-glycosylation and superior pharmacokinetic properties.Although olfaction is a modality with great interindividual perceptual disparities, its subjective dimension has been let aside in modern research, in line with the overall neglect of consciousness in experimental psychology. However, following the renewed interest for the neural bases of consciousness, some methodological leads have been proposed to include subjectivity in experimental protocols. Here, we argue that adapting such methods to the field of olfaction will allow to rigorously acquire subjective reports, and we present several ways to do so. This will improve the understanding of diversity in odor perception and its underlying neural mechanisms.Cell surface glycosylation has been known as an important modification process that can be targeted and manipulated by malignant cells to escape from host immunosurveillance. We previously showed the blood group branched I antigen on the leukemia cell surface can regulate the cell susceptibility against natural killer (NK) cell-mediated cytotoxicity through interfering target-NK interaction. In this work, we first identified N-linkage as the major glycosylation linkage type for branched I glycan formation on leukemia cells, and this linkage was responsible for cell sensitivity against therapeutic NK-92MI targeting. Secondly, by examining different leukemia cell surface death receptors, we showed death receptor Fas had highest expressions in both Raji and TF-1a cells. Mutations on two Fas extracellular N-linkage sites (118 and 136) for glycosylation impaired activation of Fas-mediated apoptosis during NK-92MI cytotoxicity. Last, we found that the surface I antigen expression levels enable leukemia cells to respond differently against NK-92MI targeting. In low I antigen expressing K-562 cell, reduction of I antigen presence greatly reduced leukemia cell susceptibility against NK-92MI targeting. But in other high I antigen expressing leukemia cells, similar reduction in I antigen expression did not affect cell susceptibility. After an animal-associated injury (AAI) in rabies-endemic regions, post-exposure prophylaxis (PEP) is needed to prevent infection.1,2 PEP consists of rabies vaccinations (RV) and in some cases also additional rabies immune globulins (RIG). Not always PEP medication, and RIG in particular, is accessible. Along with an increased number of exposure notifications among Dutch travellers, this might lead to treatment delay and thus to increased health risks. Until now, research mainly focused on factors associated with exposition, but none on which factors are associated with PEP delay. This study aimed to identify which general sample characteristics are associated with PEP delay while being abroad. A quantitative retrospective observational study was conducted. The study population consisted of insured Dutch international travellers who actively contacted their medical assistance company (2015-2019) because of an animal-associated injury (AAI) (N = 691). The association between general sample characteristics ic countries. Our results suggest that the advice for PrEP should be given based on travel destination, as this was found to be the main factor for PEP delay, among travellers going to rabies-endemic countries.This study explores the hypothesis that protein hormones are nested information systems in which initial products of gene transcription, and their subsequent protein fragments, before and after secretion and initial target cell action, play additional physiological regulatory roles. The study produced four tools and key results (1) a problem approach that proceeds, with examples and suggestions for in vivo organismal functional tests for peptide-protein interactions, from proteolytic breakdown prediction to models of hormone fragment modulation of protein-protein binding motifs in unrelated proteins; (2) a catalog of 461 known soluble human protein hormones and their predicted fragmentation patterns; (3) an analysis of the predicted proteolytic patterns of the canonical protein hormone transcripts demonstrating near-universal persistence of 9 ± 7 peptides of 8 ± 8 amino acids even after cleavage with 24 proteases from four protease classes; and (4) a coincidence analysis of the predicted proteolysis locations and the 1939 exon junctions within the transcripts that shows an excess (P less then 0.001) of predicted proteolysis within 10 residues, especially at the exonal junction (P less then 0.01). It appears all protein hormone transcripts generate multiple fragments the size of peptide hormones or protein-protein binding domains that may alter intracellular or extracellular functions by acting as modulators of metabolic enzymes, transduction factors, protein binding proteins, or hormone receptors. High proteolytic frequency at exonal junctions suggests proteolysis has evolved, as a complement to gene exon fusion, to extract structures or functions within single exons or protein segments to simplify the genome by discarding archaic one-exon genes.