Ruminant agriculture suffers from inefficient capture of forage protein and consequential release of N pollutants to land. This is due to proteolysis in the rumen catalyzed by both microbial but initially endogenous plant proteases. Plant breeding-based solutions are sought to minimize these negative environmental impacts. The aim of this study was to perform an integrated study of rumen N metabolism using semi-continuous rumen simulation fermenters (Rusitec) to explore the extent to which swards containing Festulolium populations (interspecific hybrids between Lolium and Festuca grass species) with decreased rates of endogenous protein degradation conferred advantageous protein utilization in comparison with a National Listed perennial ryegrass. An in vitro experiment was conducted using three Festulolium hybrids (Lolium perenne × Festuca arundinacea var. glaucescens, LpFg; Lolium perenne × Festuca mairei, LpFm; and Lolium multiflorum × Festuca arundinacea var. glaucescens, LmFg) and a Lolium perenne, Lp conant-mediated proteolysis trait to improve the efficiency of capture of forage protein and decrease the release of N pollutants onto the land. To determine if there is a difference in the wavelet variances of seizure and non-seizure channels in the EEG of an epileptic subject. A six-level decomposition was applied using the Maximal Overlap Discrete Wavelet Transform (MODWT). The wavelet variance and 95% CIs were calculated for each level of the decomposition. The number of changes in variance for each level were found using a change-point detection method of Whitcher. The Kruskal-Wallis test was used to determine if there were differences in the median number of change points within channels and across frequency bands (levels). No distinctive pattern was found for the wavelet variances to differentiate the seizure and non-seizure channels. The seizure channels tended to have lower variances for each level and overall, but this pattern only held for one of the three seizure channels (RAST4). The median number of change points did not differ between the seizure and non-seizure channels either within each channel or across the frequency bands. The use of the MODWT in examining the variances and changes in variance did not show specific patterns which differentiate between seizure and non-seizure channels. The use of the MODWT in examining the variances and changes in variance did not show specific patterns which differentiate between seizure and non-seizure channels.Obesity is a prevalent global public health issue characterized by excess body fat. Adipose tissue is now recognized as an important endocrine organ releasing an abundance of bioactive adipokines including, but not limited to, leptin, adiponectin and resistin. Obesity is a common comorbidity amongst pulmonary arterial hypertension patients, with 30% to 40% reported as obese, independent of other comorbidities associated with pulmonary arterial hypertension (e.g. https://www.selleckchem.com/TGF-beta.html obstructive sleep apnoea). An 'obesity paradox' has been observed, where obesity has been associated with subclinical right ventricular dysfunction but paradoxically may confer a protective effect on right ventricular function once pulmonary hypertension develops. Obesity and pulmonary arterial hypertension share multiple pathophysiological mechanisms including inflammation, oxidative stress, elevated leptin (proinflammatory) and reduced adiponectin (anti-inflammatory). The female prevalence of pulmonary arterial hypertension has instigated the hypothesis that estrogens may play a causative role in its development. Adipose tissue, a major site for storage and metabolism of sex steroids, is the primary source of estrogens and circulating estrogens levels which are elevated in postmenopausal women and men with pulmonary arterial hypertension. This review discusses the functions of adipose tissue in both health and obesity and the links between obesity and pulmonary arterial hypertension. Shared pathophysiological mechanisms and the contribution of specific fat depots, metabolic and sex-dependent differences are discussed.Microbial evolution experiments provide a powerful tool to unravel the molecular basis of adaptive evolution but their outcomes can be difficult to interpret, unless the selective forces that are applied during the experiment are carefully controlled. In this respect, experimental evolution in continuous cultures provides advantages over commonly used sequential batch-culture protocols because continuous cultures allow for more accurate control over the induced selective environment. However, commercial continuous-culture systems are large and expensive, while available DIY continuous-culture systems are not versatile enough to allow for multiple sensors and rigorous stirring.We present a modular continuous-culture system that adopts the commonly used GL45 glass laboratory bottle as a bioreactor vessel. Our design offers three advantages first, it is equipped with a large head plate, fitting two sensors and seven input/output ports, enabling the customization of the system for many running modes (chemostat, ans are exposed to controlled spatiotemporal variation, are essential to gain insight into the process of adaptation and the mechanisms that constrain evolution. Continuous-culture systems, like the one presented here, offer control over key environmental parameters and establish a well-defined regime of selection. As such, they create the opportunity to expose evolutionary constraints in the form of phenotypic trade-offs, contributing to a mechanistic understanding of adaptive evolution.The goal of this study is to understand the mechanisms controlling the isotopic composition of the water vapor near the surface of tropical oceans, at the scale of about a hundred kilometers and a month. In the tropics, it has long been observed that the isotopic compositions of rain and vapor near the surface are more depleted when the precipitation rate is high. This is called the "amount effect." Previous studies, based on observations or models with parameterized convection, have highlighted the roles of deep convective and mesoscale downdrafts and rain evaporation. But the relative importance of these processes has never been quantified. We hypothesize that it can be quantified using an analytical model constrained by large-eddy simulations. Results from large-eddy simulations confirm that the classical amount effect can be simulated only if precipitation rate changes result from changes in the large-scale circulation. We find that the main process depleting the water vapor compared to the equilibrium with the ocean is the fact that updrafts stem from areas where the water vapor is more enriched.