The time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials. The main features of the zitterbewegung (trembling motion) of wave packets in graphene are demonstrated and are found to depend not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Moreover, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes.The physical laws of diffraction limit the spatial resolution of optical systems. In contrary to most superresolution microscopy approaches used today, in our novel idea we are aiming to overcome this limit by developing a spatially resolved illumination source based on semiconductor nanoscale light emitting diode (nanoLED) arrays with individual pixel control. We present and discuss the results of optical simulations performed for such nanoLED emitter arrays and analyze the theoretical limits of this approach. As possible designs we study arrays of GaN nanofins and nanorods (obtained by etching nanofin arrays), with InGaN/GaN multi quantum wells embedded as active regions. We find that a suitable choice of the array dimensions leads to a reasonably directed light output and concentration of the optical power in the near field around an activated pixel. As a consequence, the spatial resolution for this type of microscopy should only be limited by the pixel pitch, and no longer by the optical diffraction. Realization of optimized nanoLED arrays has a potential to open new field of chip based superresolution microscopy, making super-high spatial resolution ubiquitously available.The quantum anomalous Hall effect (QAHE), carrying dissipationless chiral edge states, occurs without any magnetic field. Two main strategies were proposed to host QAHE the magnetic topological insulator thin films and graphene systems. Only the former one was realized in experiment at low temperature. In this paper, by dealing with the two-dimensional electron gas with an anti-dot lattice, a realistic platform is proposed to host the QAHE with both Chern number [Formula see text] and [Formula see text]. Based on the calculation of the Berry curvature integral and spacial wave function, the topological nature of the QAH edge states is well demonstrated. In the QAH region, the conductance shows quantized plateaus and their values are robust against Anderson disorder. In addition, we have also studied the effects of the size and shape of the anti-dot lattice on QAHE and they provide extra manners to adjust the system parameters. https://www.selleckchem.com/products/sardomozide-dihydrochloride.html Taking the advantages of the well developed micro-manufacture technique in semiconductors, the proposal is experimentally accessible in micro-scale.The impact of different gold nanoparticle (GNP) structures on plasmonic enhancement for DNA detection is investigated on a few-layer graphene (FLG) surface plasmon resonance (SPR) sensor. Two distinct structures of gold nano-urchins (GNu) and gold nanorods (GNr) were used to bind the uniquely designed single-stranded probe DNA (ssDNA) of Mycobacterium tuberculosis complex DNA. The two types of GNP-ssDNA mixture were adsorbed onto the FLG-coated SPR sensor through the π-π stacking force between the ssDNA and the graphene layer. In the presence of complementary single-stranded DNA, the hybridization process took place and gradually removed the probes from the graphene surface. From SPR sensor preparation, the annealing process of the Au layer of the SPR sensor effectively enhanced the FLG coverage leading to a higher load of the probe DNA onto the sensing interface. The FLG was shown to be effective in providing a larger surface area for biomolecular capture due to its roughness. Carried out in the DNA hybridization study with the SPR sensor, GNu, with its rough and spiky structures, significantly reinforced the overall DNA hybridization signal compared with GNr with smooth superficies, especially in capturing the probe DNA. The DNA hybridization detection assisted by GNu reached the femtomolar range limit of detection. An optical simulation validated the extreme plasmonic field enhancement at the tip of the GNu spicules. The overall integrated approach of the graphene-based SPR sensor and GNu-assisted DNA detection provided the proof-of-concept for the possibility of tuberculosis disease screening using a low-cost and portable system to be potentially applied in remote or third-world countries. Acute myeloid leukemia (AML) with internal tandem duplication in FMS-like tyrosine kinase 3 (FLT3-ITD) is associated with poor outcomes. This study aimed to analyze the outcomes of pediatric AML patients with FLT3-ITD mutations in the pre-FLT3 inhibitor era. We retrospectively reviewed and identified 18 patients diagnosed with non-M3 AML with FLT3-ITD mutations at Seoul National University Children's Hospital between May 2008 and August 2019. The median age was 13 years (range, 6?19 yr). The median follow-up time was 43 months (range, 6?157 mo). Fourteen patients received BH-AC-based (N4-Behenoy1-1-b-D-arabinofuranosy1cytosine) and 4 received cytarabine-based induction chemotherapy. Complete remission (CR) was achieved in 72.2% of the patients after the first induction chemotherapy and 80% of the patients achieved CR after salvage therapy. The overall CR rate was 94% (17/18 patients). These 17 patients underwent hematopoietic stem cell transplantation (9 matched unrelated donors, 5 matched related donors, and 3 haploidentical donors). Relapse occurred in 22% of the patients. Event free survival and overall survival rates were 53.8±12.1% and 53.6±12.1%, respectively, and they were not significantly different according to the type of induction chemotherapy (P=0.690) or the type of donor (P=0.102). This study outlines the outcomes of pediatric AML patients with FLT3-ITD-mutations in one institution over a decade. Outcomes were significantly improved in this study compared to our previous report in 2004, where RFS and EFS were 0%. This study can provide baseline data for pediatric patients in the pre-FLT3 inhibitor era. This study outlines the outcomes of pediatric AML patients with FLT3-ITD-mutations in one institution over a decade. Outcomes were significantly improved in this study compared to our previous report in 2004, where RFS and EFS were 0%. This study can provide baseline data for pediatric patients in the pre-FLT3 inhibitor era.