https://www.selleckchem.com/products/alantolactone.html The developed conductive and magnetic gels demonstrate great potential for the design of soft electronic systems.The ruthenium catalytic addition of alkenes to alkynes has been demonstrated as a powerful synthetic tool to form diene motifs and widely applied in the synthesis of complex molecules. However, except for the intramolecular coupling, trisubstituted alkenes are unsatisfactory coupling partners with alkynes, presumably due to the increased steric hindrance. Herein, we discovered that substituted vinyl 1,2-bisboronate derivatives can serve as the trisubstituted alkene equivalents to couple with alkynes, generating various boryl-substituted homoallylic alcohol motifs with good stereoselectivity through the sequential allylboration with aldehydes. In contrast to carbon substituents on the double bond, boron substituents accelerate the alkyne coupling.Tris(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis(2-chloroethyl)(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP d