19.3), β-Mircene (18.2 vs. 20.0), Terpinolene (12.1 vs. 7.0), α-Humulene (6.5 vs. 8.5), D-Limonene (6.2 vs. 7.2), α-Pinene (5.8 vs. 4.9), β-Pinene (5.0 vs. 5.8) and cis-β-Ocimene (4.3 vs. 5.2), whose presence is confirmed in both plant chemotypes and account for more than 80 % of the total terpenoids amount. The terpenoids which can clearly distinguish the chemotype are α-Terpineol, Linalool, DL-Menthol, α-Cedrene, and Borneol. This application provides important data on the secondary volatile components of the plant, which may be useful for a better understanding of the therapeutic properties of the cannabis phyto-complex. It gives the possibility of establishing the aroma profile of different Cannabis batches, allowing possible similarities between samples and identifying any artificial adulteration such as hexyl butyrate ester and it provides the opportunity to highlight some target compounds characteristic of the different chemotypes.The critical role of acute inflammatory processes is recognized in many chronic diseases; a key point in molecular mechanisms of acute inflammation resolution is represented by a new group of pro-resolving lipid mediators that include distinct families of molecules lipoxins, resolvins, protectins and maresins, collectively termed "specialized pro-resolving mediators" (SPMs). In particular, resolvins are active in the picogram to nanogram dose range, whereby they can directly modulate a plethora of anti-inflammatory responses. The presented method proposes an analytical protocol able to extract and to quantify 6 different resolvins from 3 different matrices (plasma, cells and exudates). The method, validated according to the EMA guideline for bioanalysis, exhibited good precision (1%-20%) and accuracy (2%-20%). In particular, the combination of two different sample preparation techniques, Liquid-Liquid Extraction (LLE) and micro-Solid Phase Extraction (μSPE), applied for the first on this class of molecules, used for the extraction and clean-up respectively, led to high enrichment factor (20 fold) and consequently a high sensitivity (LOQ between 1 and 38 pg mL-1); moreover the validation data proved the versatility of μSPE as clean-up tool as it was capable to manage huge enrichment factor without negatively affect accuracy and precision of analysis.The introduction of SARS-CoV-2 containing human stool and sewage into water bodies may raise public health concerns. However, assessment of public health risks by faecally contaminated water is limited by a lack of knowledge regarding the persistence of infectious SARS-CoV-2 in water. In the present study the decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA were determined in river and seawater at 4 and 20°C. These decay rates were compared to S. typhimurium bacteriophage MS2 and pepper mild mottle virus (PMMoV). Persistence of viable SARS-CoV-2 was temperature dependent, remaining infectious for significantly longer periods of time in both freshwater and seawater at 4°C than at 20°C. T90 for infectious SARS-CoV-2 in river water was 2.3 days and 3.8 days at 20°C and 4°C, respectively. The T90 values were 1.1 days and 2.2 days in seawater at 20°C and 4°C, respectively. https://www.selleckchem.com/products/phorbol-12-myristate-13-acetate.html In contrast to the rapid inactivation of infectious SARS-CoV-2 in river and sea water, viral RNA was relatively stable. The RNA decay rates were increased in non-sterilised river and seawater, presumably due to the presence of microbiota. The decay rates of infectious MS2, MS2 RNA and PMMoV RNA differed significantly from the decay rate of SARS-CoV-2 RNA, suggesting that their use as surrogate markers for the persistence of SARS-CoV-2 in the environment is limited.The germination process causes changes in the chemical composition of seeds that improves the nutritional value of sprouts, while decreasing their microbiological safety, since the germination conditions are ideal for bacterial growth as well. This review explores the bacteriological safety of sprouts and their involvement in foodborne illness outbreaks, worldwide. Additionally, approaches to improve the shelf-life and microbiological safety of sprouts are discussed. According to the literature, sprout consumption is associated with more than 60 outbreaks of foodborne illness worldwide, since 1988. Alfalfa sprouts were most commonly involved in outbreaks and the most commonly implicated pathogens were Salmonella and pathogenic Escherichia coli (especially, Shiga toxin producing E. coli). In the pre-harvest stage, the implementation of good agricultural practices is an important tool for producing high-quality seeds. In the post-harvest stage, several methods of seed decontamination are used commercially, or have been investigated by researchers. After germination, seedlings should be kept under refrigeration and, if possible, cooked before consumption. Finally, microbiological analyses should be performed at all stages to monitor the hygiene of the sprout production process.Herein, we propose a novel biosensing platform involving an array of 64 hybrid cantilevers and integrated strain sensors to measure the real-time contractility of the drug-treated cardiomyocytes (CMs). The strain sensor is integrated on the polyimide (PI) cantilever. To improve the strain sensor reliability and construct the engineered cardiac tissue, the nanogroove-patterned polydimethylsiloxane (PDMS) encapsulation layer is bonded on the PI cantilever. The preliminary sensing characteristics demonstrate the superior structural integrity, robustness, enhanced sensitivity, and repeatability of the proposed devices. The long-term durability and biocompatibility of the PI/PDMS hybrid cantilever is verified by evaluating the cell viability and contractility. We also validate the proposed biosensing platform for cardiotoxicity measurement by applying it to two specific cardiovascular drugs quinidine and verapamil. In response to quinidine and verapamil, the engineered CMs exhibited negative inotropic and chronotropic effects. The fabricated cantilever device successfully detected the quinidine-induced adverse effects in CMs such as early after depolarization (EADs) and Torsade de points (TdP) in real-time. The array of hybrid cantilevers with integrated strain sensors has the potential to satisfy the need for innovative analytic platforms owing to its high throughput and simplified data analysis.