https://www.selleckchem.com/products/Bleomycin-sulfate.html Molecular imprinting technology was used to coat polydopamine (PDA) onto MIL-53(Fe) surface by simple self-polymerization. The MIL-53(Fe)@MIP composite with enhanced peroxidase-like activity and specific target recognition function was synthesized and selected to construct a fluorescence sensor to detect metronidazole (MNZ). Since the substrate terephthalic acid was incorporated in the framework of MIL-53(Fe)@MIP, no additional luminescent substrate was required. This avoided the interference of the substrate on the enzymatic detection system and improved the accuracy of the assay. The characteristics of MIL-53(Fe)@MIP composite were investigated and confirmed by systematic analyses. The experimental results proved that the sensor provided satisfactory performances for quantitative determination of MNZ in wide linear range from 1 to 200 μM with low limit of detection as 53.4 nM. Potential interfering substances such as common cations and anions, amino acids, other antibiotics, sugars, and food additive were studied to show negligible effect on the assay, allowing the practical application to different fields including milk and human serum by the standard addition method. The recoveries were obtained between 93.2 and 102%, and the RSD was less than 3%.Bacterial infections remain the principal cause of mortality worldwide, making the detection of pathogenic bacteria highly important, especially Escherichia coli (E. coli). Current E. coli detection methods are labour-intensive, time-consuming, or require expensive instrumentation, making it critical to develop new strategies that are sensitive and specific. Microchips are an automated analytical technique used to analyse food based on their separation efficiency and low analyte consumption, which make them the preferred method to detect pathogenic bacteria. This review presents an overview of microchip-based analytical methods for analysing E. coli, which were