https://www.selleckchem.com/products/pirtobrutinib-loxo-305.html CONCLUSION Once cTnI and cTnT are released to the circulation, there seems to be no difference in clearance. However, cTnI is degraded and released faster than cTnT from necrotic cardiac tissue. Faster degradation and release may be the main reason why cTnI reaches higher peak concentrations and returns to normal concentrations faster in patients with MI. © American Association for Clinical Chemistry 2020. All rights reserved. For permissions, please email journals.permissions@oup.com.BACKGROUND Thrombosis is a major global disease burden with almost 60% of cases related to underlying heredity and most cases still idiopathic. Synonymous single nucleotide polymorphisms (sSNPs) are considered silent and phenotypically neutral. Our previous study revealed a novel synonymous FII c.1824C>T variant as a potential risk factor for pregnancy loss, but it has not yet been associated with thrombotic diseases. METHODS To determine the frequency of the FII c.1824C>T variant we have sequenced patients' DNA. Prothrombin RNA expression was measured by quantitative PCR. Functional analyses included routine hemostasis tests, western blotting and ELISA to determine prothrombin levels in plasma, and global hemostasis assays for thrombin and fibrin generation in carriers of the FII c.1824C>T variant. Scanning electron microscopy was used to examine the structure of fibrin clots. RESULTS Frequency of the FII c.1824C>T variant was significantly increased in patients with venous thromboembolism and cerebrovascular insult. Examination in vitro demonstrated increased expression of prothrombin mRNA in FII c.1824T transfected cells. Our ex vivo study of FII c.1824C>T carriers showed that the presence of this variant was associated with hyperprothrombinemia, hypofibrinolysis, and formation of densely packed fibrin clots resistant to fibrinolysis. CONCLUSION Our data indicate that FII c.1824C>T, although a synonymous variant, leads