https://www.selleckchem.com/products/yo-01027.html The glucose-lowering effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors is reduced in patients with diabetes who have chronic kidney disease (CKD). In the present study, we examined the effect of an SGLT2 inhibitor on the salt sensitivity of blood pressure (BP), circadian rhythm of BP, and sympathetic nerve activity (SNA) in nondiabetic CKD rats. Uninephrectomized Wistar rats were treated with adenine (200 mg/kg/day) for 14 days. After stabilization with a normal-salt diet (NSD, 0.3% NaCl), a high-salt diet (HSD, 8% NaCl) was administered. Mean arterial pressure (MAP) was continuously monitored using a telemetry system. We also analyzed the low frequency (LF) of systolic arterial pressure (SAP), which reflects SNA. In adenine-induced CKD rats, HSD consumption for 5 days significantly increased the mean MAP from 106 ± 2 to 148 ± 3 mmHg. However, MAP was decreased to 96 ± 3 mmHg within 24 h after switching back to a NSD (n = 7). Treatment with an SGLT2 inhibitor, luseogliflozin (10 mg/kg/day, p.o., n = 7), significantly attenuated the HSD-induced elevation of MAP, which was associated with a reduction in LF of SAP. These data suggest that treatment with an SGLT2 inhibitor attenuates the salt sensitivity of BP, which is associated with SNA inhibition in nondiabetic CKD rats.There is evidence to suggest that hypertension involves a chronic low-grade systemic inflammatory response; however, the underlying mechanisms are unclear. To further understand the role of inflammation in hypertension, we used a rat renovascular model of hypertension in which we administered the TNF-α synthesis inhibitor pentoxifylline (PTX, 30 mg/kg/day) in the drinking water for 60 days. In conscious rats, PTX administration significantly attenuated the development of hypertension (systolic blood pressure, PTX 145 ± 8 vs. vehicle (Veh) 235 ± 11 mmHg, after 38 days of treatment, P  less then  0.05, N = 5/group). This attenuation in hypert