Reaumuria trigyna, an endangered recretohalophyte, is a small archaic wild shrub endemic to arid and semiarid plateau regions of Inner Mongolia, China. Based on salt-related transcriptomic data, we isolated a GRX family gene, glutaredoxin like protein (RtGRL1), from R. trigyna that is associated with the removal of active oxygen and regulation of redox status. RtGRL1 encodes a plasma membrane and chloroplast-localized protein induced by salt, cold, drought stress, ABA, and H2O2. In Arabidopsis thaliana, ectopically expressed RtGRL1 positively regulated biomass accumulation, chlorophyll content, germination rate, and primary root length under salt and drought stress. Overexpression of RtGRL1 induced expression of genes related to antioxidant enzymes and proline biosynthesis, thus increasing glutathione biosynthesis, glutathione-dependent detoxification of reactive oxygen species (ROS), and proline content under stress. Changes in RtGRL1 expression consistently affected glutathione/oxidizedglutathione and ascorbate/dehydroascorbate ratios and H2O2 concentrations. Furthermore, RtGRL1 promoted several GSH biosynthesis gene transcripts, decreased leaf Na+ content, and maintained lower Na+/K+ ratios in transgenic A. thaliana compared to wild type plants. These results suggest a critical link between RtGRL1 and ROS modulation, and contribute to a better understanding of the mechanisms governing plant responses to drought and salt stress.Zinc (Zn) is involved in plant growth and stress resistance and is known to increase crop yield. Here, we investigated the effect of Zn on water absorption in the roots of maize (Zea mays L.), a crop which is sensitive to Zn deficiency, during water stress conditions. Seedlings of the maize variety "Zhengdan 958" were cultivated with 0.1 or 6 μM ZnSO4·7H2O. To simulate drought stress, three-week-old seedlings were exposed to 15% polyethylene glycol (PEG). Root growth parameters, root antioxidant enzyme activity, root hydraulic conductivity, root aquaporin gene expression, root and leaf anatomy structure, leaf water potential, chlorophyll content, leaf area, and gas exchange parameters were measured. Under water stress, moderate Zn treatment promoted root growth; maintained root and leaf anatomy structural integrity. Moderate Zn significantly increased roots hydraulic conductivity (51%) and decreased roots antioxidant enzyme activity (POD -11.1%, CAT -35.1%, SOD -3.1%) compared with low-level Zn under water stress. The expression of ZmPIP1;1, ZmPIP1;2, and ZmPIP2;2 was significantly higher with moderate Zn treatment than that of low-level Zn treatment. The leaf water potential, chlorophyll content, leaf area, and gas exchange parameters with moderate Zn treatment increased significantly under water stress compared with low-level Zn treatment. The moderate concentration of Zn improved root hydraulic conductivity in maize and increased resistance to simulated drought conditions by maintaining root structural integrity, decreasing antioxidant enzyme activity, and increasing aquaporin gene expression. Moderate Zn application increased root water absorption and leaf transpiration, thereby maintaining maize water balance under water stress conditions.Climate change and oil pollution pose a major threat to tropical marine ecosystems and to the coastal communities relying on their resources. The Gulf of Guinea is severely affected by multiple human induced stressors, but the potential impacts of these on marine productivity remain unknown. We investigated the combined effects of heatwaves (climate stressor) and the polycyclic aromatic hydrocarbon pyrene (proxy for oil) on the copepod Centropages velificatus. We quantified survival, reproduction and fecal pellet production of females exposed to concentrations of 0, 10, 100 and 100+ nM (saturated) pyrene under simulated heatwaves of different thermal intensity (+3 °C and +5 °C above control treatment temperature). Thermal stress due to both moderate and intensive heatwaves resulted in reduced survival and egg production. The negative effects of pyrene were only measurable at the high pyrene concentrations. However, thermal stress increased the sensitivity of C. https://www.selleckchem.com/products/talabostat.html velificatus to pyrene, indicating a synergistic interaction between the two stressors. We document that the interaction of multiple stressors can result in cumulative impacts that are stronger than expected based on single stressor studies. Further research is urgently needed to evaluate the combined impact of climatic and anthropogenic stressors on the productivity of coastal ecosystems, particularly in the tropical areas.Numerous environmental pollutants have the potential to accumulate in sediments, and among them are endocrine-disrupting chemicals (EDCs). It is well documented that water-borne exposure concentrations of some potent EDCs, more specifically estrogenic- active compounds (ECs), can impair the reproduction of fish. In contrast, little is known about the bioavailability and effects of sediment-associated ECs on fish. Particularly, when sediments are disturbed, e.g., during flood events, chemicals may be released from the sediment and become bioavailable. The main objectives of this study were to evaluate a) whether ECs from the sediment become bioavailable to fish when the sediment is suspended, and b) whether such exposure leads to endocrine responses in fish. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed over 21 days to constantly suspended sediments in the following treatments i) a contaminated sediment from the Luppe River, representing a "hotspot" for EC accumulation, ii) a reference sediment (ex suspension. The results of the present study demonstrated that sediments not only function as a sink for ECs but can turn into a significant source of pollution when sediments are resuspended as during flood-events. This highlights the need for sediment quality criteria considering bioavailability sediment-bound contaminants in context of flood events. Juvenile dermatomyositis (JDM) is the most common inflammatory myopathy of childhood. To analyze clinical features, paraclinical examinations, MSAs, treatment response and long-term outcome in a JDM cohort METHODS 58 patients (35F, 23M) from a tertiary referral center in the last two decades are included. Mean age at onset was 8.1±4.3, with a mean follow-up period of 5.66±3.59 years. Dermatological manifestations (91%) and muscle weakness (76%) were the key diagnostic elements. Elevated serum creatine kinase levels (86%), electromyography (23/25), muscle MRI (12/15), and muscle biopsy (n=35) were compatible with the diagnosis. Out of 46 patients tested, 34 (76%) had autoantibodies, with NXP2 (21.7%), followed by TIF1g (17.4%), MDA5 (8.7%), and Mi-2 (8.7%). Presence of TIF1g and NXP2 indicated a severe course; and Ku a much severe course compared to previous studies. Corticosteroids (100%) combined with methotrexate (93%) was the initial treatment. Biological disease modifying anti-rheumatic drugs (DMARDs) were used in 22% of the cohort.