OQ level, for all insulins and all samples, accuracy was between 70 and 130% and precision inferior to 30%. The validated method was applied to five subjects participating in therapeutic monitoring of insulin and to seven post-mortem cases.Near-infrared (NIR) aggregation-induced emission (AIE) of previous organic photosensitizers is usually weak because of the competition between twisted intramolecular charge transfer (TICT) effect and AIE. Herein, we report a rational molecular design strategy to boost NIR AIE of photosensitizers and still to keep strong 1O2 production capacity via rotor effect. https://www.selleckchem.com/products/tertiapin-q.html To this end, one new triphenylamine (TPA)-based AIE photosensitizer, TPAM-1, is designed to give strong ability to generate 1O2 but weak NIR fluorescence in the aggregate state due to the strong TICT effect. Another new TPA-based AIE photosensitizer, TPAM-2, is designed by introducing three p-methoxyphenyl units as rotors into the structure of TPAM-1 to modulate the competition between AIE and TICT. TPAM-1 and TPAM-2 exhibit stronger ability to generate 1O2 in the aggregate state than the commercial photosensitizer, Ce6. Furthermore, TPAM-2 gives much brighter NIR luminescence (25-times higher quantum yield) than TPAM-1 in the aggregate state due to the rotor effect. TPAM-2 with strong NIR AIE and 1O2 production capability was encapsulated by DSPE-PEG2000 to give good biocompatibility. The DSPE-PEG2000-encapsulated TPAM-2 nanoparticles show good cell imaging performance and remarkable photosensitive activity for killing HeLa cells. This work provides a new way for designing ideal photosensitizers for AIE imaging-guided photodynamic therapy.A tutorial and spreadsheet for the validation and bottom-up uncertainty evaluation of quantifications performed by instrumental methods of analysis based on linear weighted calibrations is presented. The developed tool automatically assesses if calibrator values uncertainty is negligible given instrumental signal precision, assesses signal homoscedasticity by the Levene's test, guides the selection of weighting factors and evaluates the fitness of the regression model to define the calibration curve. The spreadsheet allows the use of the linear weighted regression model without the need for collecting many replicate signals of calibrators and sample by taking previously developed detailed models of signal precision variation in the calibration interval after adjustments to the daily precision conditions. This tool was successfully applied to the determination of the mass concentration of Cd, Pb, As, Hg, Co, V and Ni in a nasal spray by ICP-MS after samples dilution and acidification. The developed uncertainty models were checked through the analysis of nasal sprays after spiking with known analyte concentration levels. The metrological compatibility between estimated and reference analyte levels for 95% or 99% confidence level supports uncertainty model adequacy. The spiked samples were quantified from many replicate signals but uncertainty evaluation from duplicate calibrator and sample signals was assessed by randomly selecting calibrators and sample signals and by numerically defining a minimum acceptable success rate of the compatibility tests. The developed model was proven adequate to quantify the uncertainty of the studied measurements.In the present work, a paper-based electrode assemble was developed and implemented to detect target microRNA 155 (miRNA 155) via electrochemical impedance spectroscopy (EIS) measurements. In this concept, gold nanoparticles (AuNPs) modified paper based electrode assemble system (AuNP-PE) was designed, and characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and EIS measurements. The impedimetric detection of miRNA 155 was performed by measuring the fractional change at the charge transfer resistance (Rct). The detection limits were found as 33.8 nM in PBS and 93.4 nM in fetal bovine serum (FBS) medium, respectively. The selectivity of the proposed assay was tested against to non-complementary (NC) and mismatch (MM) miRNA sequences in the presence of mixture sample containing miRNANC (11) and miRNAMM (11) in PBS (pH 7.40) or FBS. The analytical performance and the selectivity of impedimetric biosensor were also tested in FBS.To overcome the problem of incorrect levodopa (LD) dosage in the treatment of Parkinson's disease, a new analytical tool is urgently needed for accurately determining the concentration of LD in human fluids. Herein, an effective and stable sensor based on a Co-single-atomic-site catalyst (Co-SASC)-modified glassy carbon electrode (Co-SASC/GCE) was developed for the determination of LD concentration. The physicochemical characterization of Co-SASC is systematically investigated. It has excellent thermal stability, graphitization degree, and a large specific surface area. Benefiting from its porous structure for kinetically fast catalysis and component advantages for fix a single cobalt atom to improve stability, Co-SASC/GCE exhibits a superior electrochemical response. Under optimal conditions (pH 2.0, coating amount is 10 μg), an ideal linear relationship is achieved between the logarithm of the peak current of the sensor and the logarithm of LD concentration. The linear range is 0.1-200 μM, and the limit of detection (LOD) is 0.033 μM. After a simple pretreatment, LD in human serum is detected by Co-SASC/GCE with excellent stability and selectivity. As such, this work enlarges the existing electrochemical sensor toolbox by offering a reasonable design and synthesis protocol for advanced materials to accurately determine LD in human fluids for the clinical treatment of Parkinson's disease.Although many copper-based antimicrobial compounds have been developed to control pathogenic bacteria and fungi in plants and applied for crop protection, there is evidence that several plant pathogens have developed resistance to copper-based antimicrobial compounds, including some Xanthomonas species. Xylella is a bacterial genus belonging to the Xanthomonas family; and X. fastidiosa, which is responsible for citrus variegated chlorosis (CVC) in sweet orange, may develop resistance to one or more copper-based antimicrobials. Because of the time required for the development and approval of new antimicrobials for commercial use, the discovery of novel bactericidal compounds is essential before the development of resistance to the antimicrobials currently in use becomes widespread. Here, we explored the antimicrobial potential of two newly synthesized antimicrobials complexes and one natural compound against X. fastidiosa. Several nuclear magnetic resonance (NMR) assays with high resolution and sensitivity were developed to identify new diastereoisomers in the context of octahedral ruthenium - [Ru(narin)(phen)2]PF6-and magnesium naringenin 5-alkoxide - [Mg(narin)(phen)2]OAc - complexes, obtained in the present work.