https://www.selleckchem.com/products/cx-5461.html Computed tomography (CT) scans are increasingly available in clinical care globally. They enable a rapid and detailed assessment of tissue and organ involvement in disease processes that are relevant to diagnosis and management, particularly in the context of the COVID-19 pandemic. The aim of this paper is to identify differences in the CT scan findings of patients who were COVID-19 positive (confirmed via nucleic acid testing) to patients who were confirmed COVID-19 negative. A retrospective cohort study was proposed to compare patient clinical characteristics and CT scan findings in suspected COVID-19 cases. A multivariable logistic model with LASSO (least absolute shrinkage and selection operator) selection for variables was used to identify the good predictors from all available predictors. The area under the curve (AUC) with 95% CI was calculated for each of the selected predictors and the combined selected key predictors based on receiver operating characteristic curve analysis. A total of 94 (519. This study suggests that chest CT scans should be more broadly adopted along with nucleic acid testing in the initial assessment of suspected COVID-19 cases, especially for patients with nonspecific symptoms. The COVID-19 outbreak was designated a global pandemic on March 11, 2020. The relationship between vaping and contracting COVID-19 is unclear, and information on the internet is conflicting. There is some scientific evidence that vaping cannabidiol (CBD), an active ingredient in cannabis that is obtained from the hemp plant, or other substances is associated with more severe manifestations of COVID-19. However, there is also inaccurate information that vaping can aid COVID-19 treatment, as well as expert opinion that CBD, possibly administered through vaping, can mitigate COVID-19 symptoms. Thus, it is necessary to study the spread of inaccurate information to better understand how to promote scientific knowledg