03) activity and higher inflammatory markers levels (high sensitivity C-reactive protein and interleukin-6, p  less then  0.01) than patients in the other stages. In addition, the level of β-carotene was negatively associated with waist circumference, and ubiquinone was positively associated with the level of high-density lipoprotein cholesterol (p  less then  0.05). Higher β-carotene and ubiquinone levels were negatively associated with hypertriglyceridemia and the risk of metabolic syndrome (p  less then  0.05). CONCLUSIONS A high proportion of patients with oral cancer had ubiquinone or β-carotene deficiency and metabolic disorders. The level of ubiquinone or β-carotene was negatively associated with the risk of central obesity, hypertriglyceridemia, and metabolic syndrome. Since patients with oral cancer suffer from high oxidative stress and inflammation (particularly in the T3 and T4 stages), supplementation with antioxidant vitamins such as ubiquinone or β-carotene could be preferentially applied.BACKGROUND Colon adenocarcinoma (COAD) is one of the most lethal cancers. It is particularly important to accurately predict prognosis and to provide individualized treatment. Several lines of evidence suggest that genetic factors and clinicopathological characteristics are related to cancer onset and progression. The aim of this study was to identify potential prognostic genes and to develop a nomogram to predict survival and recurrence of COAD. METHODS To identify potential prognostic genes in COAD, microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were obtained from GEO2R. Venn diagram was drawn to select those genes that were overexpressed in all datasets, and survival analyses were performed to determine the prognostic values of the selected genes. New nomograms were developed based on the genes that were significantly associated with prognosis. Clinicopathological data were obtained from The Cancer Genome Atlas (TCGA). Finally, the new models had higher predictive accuracy. Decision curve analyses (DCA) indicated that the clinical value of the new models were higher than TNM models for predicting disease-free survival. CONCLUSION The combination of INHBA expression with a clinical nomogram improves prognostic power in colon adenocarcinoma, especially for predicting recurrence.BACKGROUND Approximately one third of all patients with CRC present with, or subsequently develop, colorectal liver metastases (CRLM). The objective of this population-based analysis was to assess the impact of resection of liver only, lung only and liver and lung metastases on survival in patients with metastatic colorectal cancer (mCRC) and resected primary tumor. METHODS Ten thousand three hundred twenty-five patients diagnosed with mCRC between 2010 and 2015 with resected primary were identified in the Surveillance, Epidemiology and End Results (SEER) database. Overall, (OS) and cancer-specific survival (CSS) were analyzed by Cox regression with multivariable, inverse propensity weight, near far matching and propensity score adjustment. RESULTS The majority (79.4%) of patients had only liver metastases, 7.8% only lung metastases and 12.8% metastases of lung and liver. 3-year OS was 44.5 and 27.5% for patients with and without metastasectomy (HR = 0.62, 95% CI 0.58-0.65, P  less then  0.001). Metastasectomy uniformly improved CSS in patients with liver metastases (HR = 0.72, 95% CI 0.67-0.77, P  less then  0.001) but not in patients with lung metastases (HR = 0.84, 95% CI 0.62-1.12, P = 0.232) and combined liver and lung metastases (HR = 0.89, 95% CI 0.75-1.06, P = 0.196) in multivariable analysis. Adjustment by inverse propensity weight, near far matching and propensity score and analysis of OS yielded similar results. CONCLUSIONS This is the first SEER analysis assessing the impact of metastasectomy in mCRC patients with removed primary tumor on survival. The analysis provides compelling evidence of a statistically significant and clinically relevant increase in OS and CSS for liver resection but not for metastasectomy of lung or both sites.BACKGROUND Isocitrate dehydrogenase 1/2 (IDH1/2), BAP1, ARID1A and PBRM1 have been reported as the most frequent mutant genes in intrahepatic cholangiocarcinoma (ICC), and their relationships with clinicopathological features and prognosis were researched in this study. METHODS We collected clinical data of 130 ICC patients from January 2012 to December 2017. The IDH1/2 mutation and loss of BAP1, ARID1A and PBRM1 expressions were detected by DNA sequencing or immunohistochemical methods, and histological subtype of ICCs was determined by hematoxylin-eosin, Alcian blue and S100P staining. RESULTS IDH1/2 mutation was related to decreased preoperative serum total bilirubin (P = 0.039), ferritin (P = 0.000) and higher histological differentiation (P = 0.024), and was associated with prolonged disease-free survival (P = 0.009) and a trend toward increased overall survival (P = 0.126) in small duct type of ICCs. Immunohistochemical staining results of MsMab-1 were generally consistent with DNA sequencing for IDH1/2 mutant in ICCs (κ = 0.691). Only BAP1 expression loss was correlated to prolonged disease-free survival (P = 0.031) and overall survival (P = 0.041) in large duct type of ICCs. CONCLUSIONS IDH1/2 mutation is a favorable predictor and may be related to iron metabolism in small duct type of ICCs. Furthermore, we suggest that the detection of IDH1/2 mutation is indispensable to determine targeted therapy in small duct type ICCs, while it is not necessary in large duct of ICCs. MsMab-1 is a relatively effective multi-specific antibody against IDH1/2 mutant in ICCs. BAP1 expression loss was correlated with improved prognosis only in large duct type ICCs.BACKGROUND Metabolomics has a great potential in the development of new biomarkers in cancer and it has experiment recent technical advances. METHODS In this study, metabolomics and gene expression data from 67 localized (stage I to IIIB) breast cancer tumor samples were analyzed, using (1) probabilistic graphical models to define associations using quantitative data without other a priori information; and (2) Flux Balance Analysis and flux activities to characterize differences in metabolic pathways. RESULTS On the one hand, both analyses highlighted the importance of glutamine in breast cancer. Moreover, cell experiments showed that treating breast cancer cells with drugs targeting glutamine metabolism significantly affects cell viability. https://www.selleckchem.com/products/tas4464.html On the other hand, these computational methods suggested some hypotheses and have demonstrated their utility in the analysis of metabolomics data and in associating metabolomics with patient's clinical outcome. CONCLUSIONS Computational analyses applied to metabolomics data suggested that glutamine metabolism is a relevant process in breast cancer.