https://www.selleckchem.com/products/oxidopamine-hydrobromide.html We found a highly significant inverse correlation of r(224) = -0.41 (p less then 0.001) between pollen and changes in flu-like incidence, corrected for the incubation period. The correlation was stronger after taking into account the incubation time. We found that our predictive model has the highest inverse correlation with changes in flu-like incidence of r(222) = -0.48 (p less then 0.001) when average thresholds of 610 total pollen grains/m3, 120 allergenic pollen grains/m3, and a solar radiation of 510 J/cm2 are passed. The passing of at least the pollen thresholds, preludes the beginning and end of flu-like seasons. Solar radiation is a co-inhibitor of flu-like incidence, while temperature makes no difference. However, higher relative humidity increases with flu-like incidence. We conclude that pollen is a predictor of the inverse seasonality of flu-like epidemics, including COVID-19, and that solar radiation is a co-inhibitor, in the Netherlands.Defoliation resulting from herbivory, storm, drought, and frost may seriously impair tree growth and forest production. However, a comprehensive evaluation of defoliation impacts on tree carbon (C) assimilation and growth has not been conducted. We performed a meta-analysis of a dataset that included 1562 observations of 40 tree species from 50 studies worldwide, and evaluated defoliation impacts on photosynthetic capacity, C allocation, and tree growth. Our results showed that the reduced tree-level leaf area by defoliation outweighed the enhanced leaf-level photosynthesis, leading to a net reduction in tree C assimilation that was accompanied with decreases in nonstructural carbohydrates (NSCs) concentrations. The negative effects of defoliation on leaf NSCs decreased over time, but leaf production increased following defoliation, suggesting a shift in the C allocation towards shoots over roots. Defoliation intensity negatively affected tree growth, b