There is an urgent need to develop phosphors with high quantum efficiencies (QEs) since white light-emitting diodes (WLEDs) have emerged as a new generation of illumination materials. Utilizing energy transfer to improve the absorption of activators and adjust the emission colors of samples is one effective strategy. Here, color-tunable phosphors of the form CaAl4O7Ce,Tb were synthesized aiming at efficient energy transfer from Ce3+ to Tb3+. Since Tb3+ can be suitably sensitized by Ce3+, the co-doped phosphors can be effectively excited by near-ultraviolet (NUV) light. The internal QE of CaAl4O70.04Ce,0.04Tb under 350 nm excitation is as high as 92.55%, and the external QE is 71.02%. A WLED fabricated from BAMEu2+, CaAl4O70.04Ce,0.04Tb, and CaAlSiN3Eu2+ with a 365 nm LED chip exhibited a correlated color temperature (CCT) of 4706 K and a color rendering index (CRI, Ra) of 81.44. The energy transfer mechanism and thermal stability of the phosphor were also investigated. The results provide an effective approach for developing highly efficient green-emitting phosphors for NUV WLEDs.3D-printing technologies, such as biofabrication, capitalize on the homogeneous distribution and growth of cells inside biomaterial hydrogels, ultimately aiming to allow for cell differentiation, matrix remodeling, and functional tissue analogues. However, commonly, only the mechanical properties of the bioinks or matrix materials are assessed, while the detailed influence of cells on the resulting mechanical properties of hydrogels remains insufficiently understood. Here, we investigate the properties of hydrogels containing cells and spherical PAAm microgel beads through multi-modal complex mechanical analyses in the small- and large-strain regimes. We evaluate the individual contributions of different filler concentrations and a non-fibrous oxidized alginate-gelatin hydrogel matrix on the overall mechanical behavior in compression, tension, and shear. Through material modeling, we quantify parameters that describe the highly nonlinear mechanical response of soft composite materials. Our results show that the stiffness significantly drops for cell- and bead concentrations exceeding four million per milliliter hydrogel. In addition, hydrogels with high cell concentrations (≥6 mio ml-1) show more pronounced material nonlinearity for larger strains and faster stress relaxation. Our findings highlight cell concentration as a crucial parameter influencing the final hydrogel mechanics, with implications for microgel bead drug carrier-laden hydrogels, biofabrication, and tissue engineering.Decoding behavioral aspects associated with the water molecules in confined spaces such as an interlayer space of two-dimensional nanosheets is key for the fundamental understanding of water-matter interactions and identifying unexpected phenomena of water molecules in chemistry and physics. Although numerous studies have been conducted on the behavior of water molecules in confined spaces, their reach stops at the properties of the planar ice-like formation, where van der Waals interactions are the predominant interactions and many questions on the confined space such as the possibility of electron exchange and excitation state remain unsettled. We used density functional theory and reactive molecular dynamics to reveal orbital overlap and induction bonding between water molecules and graphene sheets under much less pressure than graphene fractures. Our study demonstrates high amounts of charge being transferred between water and the graphene sheets, as the interlayer space becomes smaller. https://www.selleckchem.com/products/gs-9973.html As a result, the inner face of the graphene nanosheets is functionalized with hydroxyl and epoxy functional groups while released hydrogen in the form of protons either stays still or traverses a short distance inside the confined space via the Grotthuss mechanism. We found signatures of a new hydrolysis mechanism in the water molecules, i.e. mechanical hydrolysis, presumably responsible for relieving water from extremely confined conditions. This phenomenon where water reacts under extreme confinement by disintegration rather than forming ice-like structures is observed for the first time, illustrating the prospect of treating ultrafine porous nanostructures as a driver for water splitting and material functionalization, potentially impacting the modern design of nanofilters, nanochannels, nano-capacitators, sensors, and so on.Organic synthesis reactions in the adsorbed phase have been recently an intensively studied topic in heterogeneous catalysis and material engineering. One of such processes is the Ullmann coupling in which halogenated organic monomers are transformed into covalently bonded polymeric structures. In this work, we use the lattice Monte Carlo simulation method to study the on-surface self-assembly of organometallic precursor architectures comprising tetrasubstituted naphthalene building blocks with differently distributed halogen atoms. In the coarse grained approach adopted herein the molecules and metal atoms were modeled by discrete segments, two connected and one, respectively, placed on a triangular lattice representing a (111) metallic surface. Our simulations focused on the influence of the intramolecular distribution of the substituents on the morphology of the resulting superstructures. Special attention was paid to the molecules that create porous networks characterized by long-range order. Moreover, the structural analysis of the assemblies comprising prochiral building blocks was made by running simulations for the corresponding enantiopure and racemic adsorbed systems. The obtained results demonstrated the possibility of directing the on-surface self-assembly towards networks with controllable pore shape and size. These findings can be helpful in designing covalently bonded 2D superstructures with predefined architecture and functions.Vanadium-based oxides with relatively high theoretical capacity have been regarded as promising electrode materials for boosting energy conversion and storage. However, their poor electrical conductivity usually leads to unsatisfied performance and poor cycling stability. Herein, uniform V2O3/N-doped carbon hollow nanospheres (V2O3/NC HSs) with mesoporous structures were successfully synthesized through a melamine-assisted simple hydrothermal reaction and carbonization treatment. We demonstrated that the introduction of melamine played an essential role in the construction of V2O3/NC HSs. Benefitting from the special mesoporous structure and large specific surface area, the as-obtained sample exhibited enhanced conductivity and structural stability. As a proof of concept, well-defined V2O3/NC HSs exhibited excellent cycling stability and rate performance for sodium-ion batteries, and achieved a discharge capacity of 263.8 mA h g-1 at a current density of 1.0 A g-1 after 1000 cycles, one of the best performances of V-based compounds.