In 1996, an international group of representatives from national archives and libraries, universities, industry, publishing offices, and other government and private sector organizations first articulated the need for certified Trustworthy Digital Repositories (TDRs). Henceforth, multiple standards for TDRs have developed worldwide and their reviewers provide third party audit of digital repositories. Even though hundreds of repositories are currently certified, we do not know if audit and certification of TDRs actually matters. For example, we do not know if digital repositories are actually better at preserving digital information after certification than they were before. Additionally, we do not know if TDRs preserve digital information better than their counterparts, although TDR standards definitely promulgate this assumption. One way of assessing whether audit and certification of TDRs matters is to study its impact on TDRs' stakeholders (e.g., funders, data producers, data consumers). As an initial critical step forward, this study examines what certification-related information repositories actually include on their websites since repository websites provide a means of disseminating information. Using findings from a content analysis of 91 TDR-certified repository websites, this research examines 1) written statements about TDR status, 2) the presence of TDR seals and their location, 3) whether the seals hyperlink to additional certification information, 4) the extent to which the certification process is explained, and 5) whether audit reports are shared. Nearly three-fourths of the repository websites provide TDR status statements and put seals in one or more places; nearly 60% post audit reports and link seals to additional certification information; and over one-third explain the certification process. Directions for future research and practical application of the results are discussed.A new ophthalmosaurid ichthyosaur, Thalassodraco etchesi gen. et sp. nov., from the Upper Jurassic Kimmeridge Clay Formation of Dorset, UK is described. The specimen, a partial, articulated skull and anterior thorax in the Etches Collection of Kimmeridge, Dorset, is exceptionally well preserved on a slab of laminated coccolith limestone and has been expertly prepared. It comprises a near complete skull in articulation with associated anterior vertebral column and dorsal ribs, complete pectoral girdle, fully exposed left forelimb, and some elements of the right forelimb. Other elements present, including an ischiopubis are preserved on separate slabs. https://www.selleckchem.com/products/dorsomorphin-2hcl.html Presumed rapid burial of the anterior portion of the specimen in the coccolith substrate has preserved a number of ossified ligaments lying across the vertebral column and associated ribs as well as stomach contents and decayed internal organs. Aspects of the dentition, skull roof bones and the forelimb configuration distinguishes the new specimen from previously described Late Jurassic ichthyosaurs. Autopmorphies for T. etchesi include a large rounded protuberance on the supratemporal bone; a thin L-shaped lachrymal, with a steeply curved posterior border; ~ 70 teeth on the upper tooth row, and deep anterior dorsal ribs. A well resolved phylogenetic analysis shows T. etchesi as a member of a basal clade within Ophthalmosauridae comprising Nannopterygius, Gengasaurus, Paraophthalmosaurus and Thalassodraco. The new specimen adds to the diversity of the Ichthyopterygia of the Kimmeridge Clay Formation and emphasises the important contribution of amateur collectors in palaeontology.Understanding cities as complex systems, sustainable urban planning depends on reliable high-resolution data, for example of the building stock to upscale region-wide retrofit policies. For some cities and regions, these data exist in detailed 3D models based on real-world measurements. However, they are still expensive to build and maintain, a significant challenge, especially for small and medium-sized cities that are home to the majority of the European population. New methods are needed to estimate relevant building stock characteristics reliably and cost-effectively. Here, we present a machine learning based method for predicting building heights, which is based only on open-access geospatial data on urban form, such as building footprints and street networks. The method allows to predict building heights for regions where no dedicated 3D models exist currently. We train our model using building data from four European countries (France, Italy, the Netherlands, and Germany) and find that the morphology of the urban fabric surrounding a given building is highly predictive of the height of the building. A test on the German state of Brandenburg shows that our model predicts building heights with an average error well below the typical floor height (about 2.5 m), without having access to training data from Germany. Furthermore, we show that even a small amount of local height data obtained by citizens substantially improves the prediction accuracy. Our results illustrate the possibility of predicting missing data on urban infrastructure; they also underline the value of open government data and volunteered geographic information for scientific applications, such as contextual but scalable strategies to mitigate climate change.The Toarcian Oceanic Anoxic Event (TOAE; Early Jurassic, ca. 182 Ma ago) represents one of the major environmental disturbances of the Mesozoic and is associated with global warming, widespread anoxia, and a severe perturbation of the global carbon cycle. Warming-related dysoxia-anoxia has long been considered the main cause of elevated marine extinction rates, although extinctions have been recorded also in environments without evidence for deoxygenation. We addressed the role of warming and disturbance of the carbon cycle in an oxygenated habitat in the Iberian Basin, Spain, by correlating high resolution quantitative faunal occurrences of early Toarcian benthic marine invertebrates with geochemical proxy data (δ18O and δ13C). We find that temperature, as derived from the δ18O record of shells, is significantly correlated with taxonomic and functional diversity and ecological composition, whereas we find no evidence to link carbon cycle variations to the faunal patterns. The local faunal assemblages before and after the TOAE are taxonomically and ecologically distinct.