https://www.selleckchem.com/products/crenolanib-cp-868596.html Cisplatin resistance is a major challenge for bladder cancer (BC). Evidence indicates that exosome derived from cancer-associated fibroblasts (CAF-Exo) can promote chemotherapy resistance in various human tumors by delivering bioactive molecules. We have previously demonstrated that CAF-derived exosomal LINC00355 promotes BC cell proliferation and invasion. However, the underlying mechanisms are still unclear. In this study, we aimed to investigate the role and mechanisms of CAF-derived exosomal LINC00355 in BC cell resistance to cisplatin. Exosomes were isolated from normal fibroblasts (NFs) and BC tumor-derived CAFs, namely, NF-Exo and CAF-Exo. CAFs were transfected with si-Ctrl or si-LINC00355 and then different exosomes were isolated, namely, CAFsi-Ctrl-Exo and CAFsi-LINC00355-Exo. The human BC cell lines (T24 and 5367) were incubated with NF-Exo, CAF-Exo, CAFsi-Ctrl-Exo, and CAFsi-LINC00355-Exo in the presence of cisplatin. MTT proliferation assay and flow cytometric analysis showed that CAF-Exo promoted BC cell resistance to cisplatin and upregulated ABCB1 expression in BC cells by transferring LINC00355 to BC cells. Luciferase activity assay confirmed the interaction between miR-34b-5p and LINC00355 or ABCB1. qRT-PCR and western blot analysis further showed that LINC00355 sponged miR-34b-5p to upregulate ABCB1 expression. However, the promoting effects of CAF-Exo on BC cell resistance to cisplatin were abolished by miR-34b-5p overexpression and ABCB1 silencing. In conclusion, exosomal LINC00355 derived from CAFs promotes BC cell resistance to cisplatin by regulating the miR-34b-5p/ABCB1 axis. Prepregnancy overweight/obesity (OWO) and isolated maternal hypothyroxinemia (IMH) may increase the risk of macrosomia, but little is known about their potential combined effect on macrosomia. The aim of this study was to assess whether prepregnancy OWO and first-trimester IMH have a synergistic effect on the