https://www.selleckchem.com/peptide/box5.html The variation of signal groups increased with increasing chlorine content of the products. Two-dimensional heteronuclear multiple bond coherence (HMBC) analysis of one sample and GC/ECNI-MS measurements indicated the presence of impurities (e.g., C9-CPs, iso-alkanes) in different technical CP products. These methods could in future allow for better distinction of CP mixtures, and an improved trace-back of environmental CPs to the source, based on specific structural features. Additionally, further structural characterization could help in the development of more accurate analysis processes. Graphical Abstract.Lead ions (Pb2+), one form of the toxic heavy metal, have drawn significant attention due to their harmful effects on human health and the environment. Although many analytical techniques have been developed over the past few decades, the development of a sensitive, selective, and rapid method to detect Pb2+ remains a challenge. In this work, we developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly sensitive detection of Pb2+ by using DNAzyme-modified Fe3O4@Au@Ag nanoparticles (Fe3O4@Au@Ag NPs). Firstly, the thiolated 5'-Cy3 DNA probe was modified on the surface of Fe3O4@Au@Ag NPs, which hybridized with the Pb2+-specific DNAzyme to form a SERS biosensor, and the Cy3 labels were used to detect Pb2+. In the presence of Pb2+, the DNAzyme cleaves the Cy3-labeled DNA probe, leading to the release of Cy3-labeled DNA probe from the Fe3O4@Au@Ag NPs. Therefore, the Raman intensity of the Cy3 labels decreases. The proposed biosensor exhibited excellent linearity in the range from 0.01 to 1.0 nM, with a limit of detection for Pb2+ of 5 pM. It features superior selectivity to Pb2+ over other interfering metal ions and good application in the determination of Pb2+ in tap water and human serum samples. The SERS biosensor provides a novel' simple and sensitive method for detection of Pb2+ and sheds ne