The coupling between electrons and protons and the long-range transport of protons play important roles throughout biology. Biomimetic systems derived from benzimidazole-phenol (BIP) constructs have been designed to undergo proton-coupled electron transfer (PCET) upon electrochemical or photochemical oxidation. Moreover, these systems can transport protons along hydrogen-bonded networks or proton wires through multiproton PCET. Herein, the nonequilibrium dynamics of both single and double proton transfer in BIP molecules initiated by oxidation are investigated with first-principles molecular dynamics simulations. Although these processes are concerted in that no thermodynamically stable intermediate is observed, the simulations predict that they are predominantly asynchronous on the ultrafast time scale. For both systems, the first proton transfer typically occurs ∼100 fs after electron transfer. For the double proton transfer system, typically the second proton transfer occurs hundreds of femtoseconds after the initial proton transfer. A machine learning algorithm was used to identify the key molecular vibrational modes essential for proton transfer a slow, in-plane bending mode that dominates the overall inner-sphere reorganization, the proton donor-acceptor motion that leads to vibrational coherence, and the faster donor-hydrogen stretching mode. The asynchronous double proton transfer mechanism can be understood in terms of a significant mode corresponding to the two anticorrelated proton donor-acceptor motions, typically decreasing only one donor-acceptor distance at a time. Although these PCET processes appear concerted on the time scale of typical electrochemical experiments, attaching these BIP constructs to photosensitizers may enable the detection of the asynchronicity of the electron and multiple proton transfers with ultrafast two-dimensional spectroscopy. Understanding the fundamental PCET mechanisms at this level will guide the design of PCET systems for catalysis and energy conversion processes.The exploration of complex multicomponent chemical reactions leading to new clusters, where discovery requires both molecular self-assembly and crystallization, is a major challenge. This is because the systematic approach required for an experimental search is limited when the number of parameters in a chemical space becomes too large, restricting both exploration and reproducibility. Herein, we present a synthetic strategy to systematically search a very large set of potential reactions, using an inexpensive, high-throughput platform that is modular in terms of both hardware and software and is capable of running multiple reactions with in-line analysis, for the automation of inorganic and materials chemistry. The platform has been used to explore several inorganic chemical spaces to discover new and reproduce known tungsten-based, mixed transition-metal polyoxometalate clusters, giving a digital code that allows the easy repeat synthesis of the clusters. Among the many species identified in this work, the most significant is the discovery of a novel, purely inorganic W24FeIII-superoxide cluster formed under ambient conditions. The modular wheel platform was employed to undertake two chemical space explorations, producing compounds 1-4 (C2H8N)10Na2[H6Fe(O2)W24O82] (1, W24Fe), (C2H8N)72Na16[H16Co8W200O660(H2O)40] (2, W200Co8), (C2H8N)72Na16[H16Ni8W200O660(H2O)40] (3, W200Ni8), and (C2H8N)14[H26W34V4O130] (4, W34V4), along with many other known species, such as simple Keggin clusters and 1D W11M2+ chains.Cowlesite, ideally Ca6Al12Si18O60·36H2O, is to date the only natural zeolite whose structure could not be determined by X-ray methods. In this paper, we present the ab initio structure determination of this mineral obtained by three-dimensional (3D) electron diffraction data collected from single-crystal domains of a few hundreds of nanometers. The structure of cowlesite consists of an alternation of rigid zeolitic layers and low-density interlayers supported by water and cations. This makes cowlesite the only two-dimensional (2D) zeolite known in nature. https://www.selleckchem.com/products/ly333531.html When cowlesite gets in contact with a transmission electron microscope vacuum, a phase transition to a conventional 3D zeolite framework occurs in few seconds. The original cowlesite structure could be preserved only by adopting a cryo-plunging sample preparation protocol usually employed for macromolecular samples. Such a protocol allows the investigation by 3D electron diffraction of very hydrated and very beam-sensitive inorganic materials, which were previously considered intractable by transmission electron microscopy crystallographic methods.The N2 analogue phosphorus nitride (PN) was the first phosphorus-containing compound to be detected in the interstellar medium; however, this thermodynamically unstable compound has a fleeting existence on Earth. Here, we show that reductive coupling of iron(IV) nitride and molybdenum(VI) phosphide complexes assembles PN as a bridging ligand in a structurally characterized bimetallic complex. Reaction with C≡N t Bu releases the mononuclear complex [(N3N)Mo-PN]-, N3N = [(Me3SiNCH2CH2)3N]3-), which undergoes light-induced linkage isomerization to provide [(N3N)Mo-NP]-, as revealed by photocrystallography. While structural and spectroscopic characterization, supported by electronic structure calculations, reveals the PN multiple bond character, coordination to molybdenum induces a nucleophilic character at the terminal atom of the PN/NP ligands. Indeed, the linkage isomers can be trapped in solution by reaction with a Rh(I) electrophile.The synthesis of protein-protein and protein-peptide conjugates is an important capability for producing vaccines, immunotherapeutics, and targeted delivery agents. Herein we show that the enzyme tyrosinase is capable of oxidizing exposed tyrosine residues into o-quinones that react rapidly with cysteine residues on target proteins. This coupling reaction occurs under mild aerobic conditions and has the rare ability to join full-size proteins in under 2 h. The utility of the approach is demonstrated for the attachment of cationic peptides to enhance the cellular delivery of CRISPR-Cas9 20-fold and for the coupling of reporter proteins to a cancer-targeting antibody fragment without loss of its cell-specific binding ability. The broad applicability of this technique provides a new building block approach for the synthesis of protein chimeras.