https://www.selleckchem.com/products/dzd9008.html p-P65 in the synovial tissues and RA-FLSs. This study was the first to demonstrate that the anti-RA effect of GB is related to reducing articular cartilage and bone destruction, inducing RA-FLSs apoptosis, and regulating inflammatory cytokine release and the Wnt5a/JNK/NF-κB axis. All the findings highlight that GB might provide a novel treatment approach for RA. This study was the first to demonstrate that the anti-RA effect of GB is related to reducing articular cartilage and bone destruction, inducing RA-FLSs apoptosis, and regulating inflammatory cytokine release and the Wnt5a/JNK/NF-κB axis. All the findings highlight that GB might provide a novel treatment approach for RA. Proliferation and migration of vascular smooth muscle cells (VSMCs) are vital processes in vascular remodeling and pathology. This study aimed to explore the expression of miR-29b and cell division cycle 7-related protein kinase (CDC7) in patients with cerebral aneurysm (CA) and their effects on the proliferation and mobility of human umbilical artery smooth muscle cells (HUASMCs). RNA levels of miR-29b and CDC7 were evaluated in the CA tissues and adjacent normal cerebral arteries from 18 patients undergoing surgery for CA rupture. The targeting of CDC7 by miR-29b was verified with luciferase reporter assay. Both CDC7 and miR-29b overexpression and silencing vectors were introduced to validate their effects on the proliferation and mobility of HUASMCs. The mRNA level of miR-29b was down-regulated (P<0.05), while the mRNA level of CDC7 was markedly elevated in CA patients (P<0.05). A Luciferase reporter assay showed CDC7 is a target gene of miR-29b, and miR-29b mimic down-regulated the mRNA and protein levels of CDC7 (P<0.05). Furthermore, miR-29b mimic inhibited, while miR-29b inhibitor or CDC7 over-expression promoted the proliferation and mobility of HUASMCs (P<0.05). miR-29-3p inhibits cell proliferation and mobility via directly targeting