https://www.selleckchem.com/products/vacuolin-1.html Because the mechanism of tissue-specific toxicity of tributyltin (TBT) in aquatic organisms has not been explained clearly, the aim of this study is to investigate the effect of chronic exposure to TBT on muscle-related energy metabolism, gill-related ATPase enzymatic system and intestine-related digestive enzymes activities in zebrafish. Male zebrafish were exposed to sub-lethal concentrations of TBT (10, 100 and 300 ng/L) for 6 weeks. Multiple biomarkers were measured (such as glucose, lactate, hexokinase, pyruvate kinase, lactate dehydrogenase, ATP content, ATPases, trypsin, lipase and amylase), which reflected more serious physiological stress with increasing TBT concentrations during the experimental period. Through principal component analysis (PCA) and integrated biomarker response (IBR) analysis, the toxic effect of TBT in zebrafish was in a concentration-dependent manner. Shortly, the results of this study can provide new evidence for a comprehensive understanding of the toxic effects of TBT.Substituted phenylamine antioxidants (SPAs) are used in Canadian industrial processes. SPAs, specifically N-phenyl-1-naphthylamine (PNA), have received very little attention despite their current use in Canada and their expected aquatic and environmental releases. There is a research gap regarding the effects of PNA in wildlife; therefore, Chelydra serpentina (common snapping turtle) was studied due to its importance as an environmental indicator species. A chronic experiment was performed using PNA spiked food (0 to 3446 ng/g) to determine its toxicity to juvenile C. serpentina. A significant increase in cyp1a mRNA level was observed in the liver of turtles exposed to 3446 ng/g PNA, suggesting that phase I detoxification is activated in the exposed animals. Additionally, a significant decrease in cyp2b transcript level was observed at the two lowest PNA doses, likely indicating another metabolic alteration for PNA. T