https://www.selleckchem.com/JAK.html Sample alignment and room temperature data collection strategies are illustrated using quasi-Laue data collection at IMAGINE at the High Flux Isotope Reactor (HFIR). Furthermore, crystal mounting and rapid freezing in liquid nitrogen for cryo-data collection to trap labile reaction intermediates is demonstrated at the MaNDi time-of-flight instrument at the Spallation Neutron Source (SNS). Preparation of the model coordinate and diffraction data files and visualization of the neutron scattering length density (SLD) maps will also be addressed. Structure refinement against neutron data-only or against joint X-ray/neutron data to obtain an all-atom structure of the protein of interest will finally be discussed. The process of determining a neutron structure will be demonstrated using crystals of the lytic polysaccharide monooxygenase Neurospora crassa LPMO9D, a copper-containing metalloprotein involved in the degradation of recalcitrant polysaccharides via oxidative cleavage of the glycosidic bond.Measuring the size distribution of the particles in a powder is a common activity in science and industry. Measuring the shape distribution of the particles is much less common. However, the shape and size of powder particles are not independent quantities. All known size/shape measurement techniques either assume a spherical shape or measure the shape in two dimensions only. The X-ray computed tomography (XCT) based method presented here measures both size and shape in 3D without making any assumptions. Starting from a 3D image of particles, the method can mathematically classify particles according to shape, for example particles composed of several smaller particles welded together as opposed to single particles that are not necessarily spherical. Of course, defining a single number as the "size" or "shape" of a random non-spherical particle is not possible in principle, leading to many ways to estimate particle size and shape via vario