In this study, the molecular state of ritonavir (RTN)-saccharin (SAC) coamorphous incorporated into mesoporous silica by solvent evaporation and the effect of SAC on the RTN dissolution from mesopores were investigated. The amorphization of RTN-SAC was confirmed as a halo pattern in powder X-ray diffraction measurements and a single glass transition event in the modulated differential scanning calorimetry (MDSC) curve. https://www.selleckchem.com/products/VX-770.html 13C solid-state NMR spectroscopy revealed a hydrogen bond between the thiazole nitrogen of RTN and the amine proton of SAC. The glass transition of the RTN-SAC coamorphous in mesoporous silica was not found in the MDSC curve, indicating that RTN and SAC were monomolecularly incorporated into the mesopores. Solid-state NMR measurements suggested that the co-incorporation of SAC into the mesopores decreased the local mobility of the thiazole group of RTN via hydrogen bond formation. The RTN-SAC 11 coamorphous in mesoporous silica retained the X-ray halo-patterns after 30 d of storage, even under high temperature and humidity conditions. In the dissolution test, the RTN-SAC 11 coamorphous in mesoporous silica maintained RTN supersaturation for a longer time than the RTN amorphous in mesoporous silica. This study demonstrated that the drug-coformer interaction within mesoporous silica can significantly improve drug dissolution.Cancer is a known deadliest disease that requires a judicious diagnostic, targeting, and treatment strategy for an early prognosis and selective therapy. The major pitfalls of the conventional approach are non-specificity in targeting, failure to precisely monitor therapy outcome, and cancer progression leading to malignancies. The unique physicochemical properties offered by nanotechnology derived nanocarriers have the potential to radically change the landscape of cancer diagnosis and therapeutic management. An integrative approach of utilizing both diagnostic and therapeutic functionality using a nanocarrier is termed as nanotheranostic. The nanotheranostics platform is designed in such a way that overcomes various biological barriers, efficiently targets the payload to the desired locus, and simultaneously supports planning, monitoring, and verification of treatment delivery to demonstrate an enhanced therapeutic efficacy. Thus, a nanotheranostic platform could potentially assist in drug targeting, image-guided focal therapy, drug release and distribution monitoring, predictionof treatment response, and patient stratification. A class of highly branched nanocarriers known as dendrimers is recognized as an advanced nanotheranostic platform that has the potential to revolutionize the oncology arena by its unique and exciting features. A dendrimer is a well-defined three-dimensional globular chemical architecture with a high level of monodispersity, amenability of precise size control, and surface functionalization. All the dendrimer properties exhibit a reproducible pharmacokinetic behavior that could ensure the desired biodistribution and efficacy. Dendrimers are thus being exploited as a nanotheranostic platform embodying a diverse class of therapeutic, imaging, and targeting moieties for cancer diagnosis and treatment.In this study the concentration effect of 2-Hydroxypropyl-beta-cyclodextrin (HP-βCyD) on oral drug absorption of the BCS class II drugs Danazol (DNZ) and Albendazole (ABZ) was evaluated. In vitro permeation of solutions and suspension systems was compared with their in vivo intestinal absorption in rats and their in vitro-in vivo correlation assessed. In solutions excess amounts of HP-βCyD decreased both in vitro permeation and in vivo absorption due to the decrease in free drug concentration, as expected. However, in suspension systems the contribution of HP-βCyD by drug complexation was found to be altered by further rate limiting steps for membrane permeation and intestinal absorption of each drug. In vitro permeation of DNZ was rate-limited by the diffusion into the unstirred water layer (UWL), while that of ABZ was rate-limited by the permeation across the lipid membrane. For the in vivo intestinal absorption, both drugs were rate-limited by the dissolution rate from undissolved drug. These differences in the rate-limiting process were considered to cause discrepancies in the result of in vitro and in vivo assays. In conclusion, it is quite important to understand the rate limiting process of oral absorption of the target drug for designing oral liquid formulations containing cyclodextrins.The growing pharmaceutical interest in the human bitter taste receptors (hTAS2Rs) has two dimensions; i) evaluation of the bitterness of active pharmaceutical compounds, in order to develop strategies for improving patients' adherence to medication, and ii) application of ligands for extra-cellular hTAS2Rs for potential preventive therapeutic achievements. The result is an increasing demand on robust tools for bitterness assessment and screening the receptor-ligand affinity. In silico tools are useful for aiding experimental-screening, as well as to elucide ligand-receptor interactions. In this review, the ligand-based and structure-based approaches are described as the two main in silico tools for bitter taste analysis. The strengths and weaknesses of each approach are discussed. Both approaches provide key tools for understanding and exploiting bitter taste for human health applications.Vitamin D is known not only for its importance for bone health but also for its biologic activities on many other organ systems. This is due to the presence of the vitamin D receptor in various types of cells and tissues, including the skin, skeletal muscle, adipose tissue, endocrine pancreas, immune cells, and blood vessels. Experimental studies have shown that vitamin D exerts several actions that are thought to be protective against coronavirus disease (COVID-19) infectivity and severity. These include the immunomodulatory effects on the innate and adaptive immune systems, the regulatory effects on the renin-angiotensin-aldosterone-system in the kidneys and the lungs, and the protective effects against endothelial dysfunction and thrombosis. Prior to the COVID-19 pandemic, studies have shown that vitamin D supplementation is beneficial in protecting against risk of acquiring acute respiratory viral infection and may improve outcomes in sepsis and critically ill patients. There are a growing number of data connecting COVID-19 infectivity and severity with vitamin D status, suggesting a potential benefit of vitamin D supplementation for primary prevention or as an adjunctive treatment of COVID-19.