https://www.selleckchem.com/products/dwiz-2.html Cell death is a fundamental biological phenomenon that contributes to the pathogenesis of various diseases. Regulation of iron and iron metabolism has received considerable research interests especially concerning the progression of metabolic diseases. Emerging evidence shows that ferroptosis, a non-apoptotic programmed cell death induced by iron-dependent lipid peroxidation, contributes to the development of complex diseases such as non-alcoholic steatohepatitis, cardiomyopathy, renal ischemia-reperfusion, and neurodegenerative diseases. Therefore, inhibiting ferroptosis can improve the pathophysiology of associated metabolic diseases. This review describes the vital role of ferroptosis in mediating the development of certain metabolic diseases. Besides, the potential risk of iron and ferroptosis in atherosclerosis and cardiovascular diseases is also described. Iron overload and ferroptosis are potential secondary causes of death in metabolic diseases. Moreover, this review also provides potential novel approaches against ferroptosis based on recent research advances. Several controversies exist concerning mechanisms underlying ferroptotic cell death in metabolic diseases, particularly in atherosclerosis. Since ferroptosis participates in the progression of metabolic diseases such as non-alcoholic steatohepatitis (NASH), there is a need to develop new drugs targeting ferroptosis to alleviate such diseases. Several controversies exist concerning mechanisms underlying ferroptotic cell death in metabolic diseases, particularly in atherosclerosis. Since ferroptosis participates in the progression of metabolic diseases such as non-alcoholic steatohepatitis (NASH), there is a need to develop new drugs targeting ferroptosis to alleviate such diseases.Diabetic cardiomyopathy (DCM) is a significant complication of diabetes mellitus characterized by gradually failing heart with detrimental cardiac remodelings, such as fibrosis