001) than males. Being employed in a COVID-19 unit, being transferred to other units, and living with children and the elderly were factors associated with higher levels of psychological distress. Greater coping abilities were detected in physicians, and in those HCWs employed in COVID units. Our findings evidenced that the psychological consequences of the pandemic were non-homogeneously distributed across HCWs categories and pointed out the presence of specific in-hospital and out-of-hospital risk factors. Temporary artery clipping facilitates safe cerebral aneurysm management, besides a risk for cerebral ischemia. We developed an artificial neural network (ANN) to predict the safe clipping time of temporary artery occlusion (TAO) during intracranial aneurysm surgery. We devised a three-layer model to predict the safe clipping time for TAO. We considered age, the diameter of the right and left middle cerebral arteries (MCAs), the diameter of the right and left A1 segment of anterior cerebral arteries (ACAs), the diameter of the anterior communicating artery, mean velocity of flow at the right and left MCAs, and the mean velocity of flow at the right and left ACAs, as well as the Fisher grading scale of brain CT scans as the input values for the model. This study included 125 patients 105 patients from a retrospective cohort for training the model and 20 patients from a prospective cohort for validating the model. The output of the neural network yielded up to 960 s overall safe clipping time for TAO. https://www.selleckchem.com/products/Cladribine.html The input values with the greatest impact on safe TAO were mean velocity of blood at left MCA and left ACA, and Fisher grading scale of brain CT scan. This study presents an axillary framework to improve the accuracy of the estimated safe clipping time interval of temporary artery occlusion in intracranial aneurysm surgery. This study presents an axillary framework to improve the accuracy of the estimated safe clipping time interval of temporary artery occlusion in intracranial aneurysm surgery.Cells interact with their environment by forming complex structures involving a multitude of proteins within assemblies in the plasma membrane. Despite the omnipresence of these assemblies, a number of questions about the correlations between the organisation of domains and the biomechanical properties of the involved proteins, namely their length, flexibility and affinity, as well as about the coupling to the elastic, fluctuating membrane, remain open. Here we address these issues by developing an effective Kinetic Monte Carlo simulation to model membrane adhesion. We apply this model to a typical experiment in which a cell binds to a functionalized solid supported bilayer and use two ligand-receptor pairs to study these couplings. We find that differences in affinity and length of proteins forming adhesive contacts result in several characteristic features in the calculated phase diagrams. One such feature is mixed states occurring even with proteins with length differences of 10 nm. Another feature are stable nanodomains with segregated proteins appearing on time scales of cell experiments, and for biologically relevant parameters. Furthermore, we show that macroscopic ring-like patterns can spontaneously form as a consequence of emergent protein fluxes. The capacity to form domains is captured by an order parameter that is founded on the virial coefficients for the membrane mediated interactions between bonds, which allow us to collapse all the data. These findings show that taking into account the role of the membrane allows us to recover a number of experimentally observed patterns. This is an important perspective in the context of explicit biological systems, which can now be studied in significant detail.Genetic analysis of circulating avian influenza viruses (AIVs) in wild birds at different geographical regions during the same period could improve our knowledge about virus transmission dynamics in natural hosts, virus evolution as well as zoonotic potential. Here, we report the genetic and molecular characterization of H6N2 influenza viruses isolated from migratory birds in Turkey, Egypt, and Uganda during 2017-2018. The Egyptian and Turkish isolates were genetically closer to each other than they were to the virus isolated from Uganda. Our results also suggest that multiple reassortment events were involved in the genesis of the isolated viruses. All viruses contained molecular markers previously associated with increased replication and/or pathogenicity in mammals. The results of this study indicate that H6N2 viruses carried by migratory birds on the West Asian/East African and Mediterranean/Black Sea flyways have the potential to transmit to mammals including humans. Additionally, adaptation markers in these viruses indicate the potential risk for poultry, which also increases the possibility of human exposure to these viruses.Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson's disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.