https://www.selleckchem.com/products/auranofin.html Di-n-butyl phthalate (DBP), one of the most widely used plasticizers, has been listed as a priority pollutant because of its toxicity to both humans and animals. In this study, Pseudomonas sp. W1, isolated from activated sludge, was capable of degrading 99.88% of DBP (1000 mg L-1) within 8 days. We immobilized the W1 strain using Fe3O4 iron nanoparticles (IONPs) coated with poly-dopamine (PDA), and further evaluated its DBP degradation efficiency. The DBP degradation performance of W1 was improved by immobilization, exhibiting 99.69% of DBP degradation efficiency on the 6th day, which was 25.68% higher than un-immobilized W1. After three cycles of magnetic recycling and utilization, W1-PDA-IONPs retained 99.6% of their original efficiency. W1-PDA-IONPs were then used to degrade DBP in landfill leachate. When the proportion of raw leachate was ≤50%, DBP could be all degraded by W1-PDA-IONPs within 6 days. In 100% landfill leachate, DBP degradation efficiency after 10 days of incubation reached 66.40%. Furthermore, W1-PDA-IONPs cells in a simulated aeration system could be effectively magnetically separated at aeration rates from 60 to 600 mL min-1. These results highlight the potential of W1-PDA-IONPs in the bioremediation of DBP-contaminated waste water. In the present work, in-situ two pot trials were conducted to explore the direct and residual influences of zeolite (ZL) on plant height, dry biomass and bioavailability of Pb, Cd, Cu, and Zn by growing cabbage followed by corn in goldmine-contaminated (GM-C), smelter factory-contaminated (SF-C), and farmland-contaminated (FL-C) soils. Initially, a single treatment of ZL was applied at 20 t/ha, and cabbage was grown under greenhouse pot conditions. After cabbage harvesting, corn was grown in the same pots without additional application of ZL. The results indicated that ZL as an amendment evidently promoted the cabbage and corn yields, whereas the residual influence