https://www.selleckchem.com/products/at-406.html Meanwhile, ileal secretory IgA (sIgA) and duodenal cytokine levels of IL-4, IL-6, IL-15, tumor necrosis factor-alpha, and interferon gamma were detected by the ELISA and radioimmunoassay, respectively. The results showed that APS significantly improved intestinal injuries of villi length, V/C ratio, and wall thickness of the small intestine infected with MDRV, effectively inhibited the reduction of IEL and GC caused by MDRV infection, subsequently increased sIgA and all the cytokine secretions at most time points, suggesting that APS pretreatment can effectively stimulate mucosal immune function by improving intestinal morphology and repair MDRV caused injures of small intestinal mucosal immune barrier in infected ducklings. Our findings lay the foundation for further application of APS in prevention and treatment of MDRV infection.The aim of the study is to determine the target of Paeteria scandens in nonalcoholic fatty liver disease (NAFLD). The Chinese herbal medicine pharmacology data and analysis platform were used to search and screen for the effective components of the Paeteria scandens compounds and to analyze the possible therapeutic targets based on network topology. In addition, various known disease target databases were enrolled, the therapeutic target proteins in NAFLD were screened, and a protein-protein interaction network was constructed. Enrichment analysis was performed on key nodes. Finally, the inhibitory effect of Paeteria scandens on NAFLD was verified by experiments. We identified 33 major candidate targets of Paeteria scandens and successfully constructed a "drug-compound-target-disease" network. Abovementioned targets revealed by gene enrichment analysis have played a significant role in the cell cycle, apoptosis, and related signal pathways. We demonstrated that Paeteria scandens downregulated serum triglyceride and lipopolysaccharides levels in NAFLD chickens by feeding with a high-capacity