https://www.selleckchem.com/products/esi-09.html These features make them a suitable cost-effective alternative to conventional targets for any MALDI MS analysis.Ion mobility spectrometry is a powerful detection method widely used in various applications. Particularly in field applications, ion mobility spectrometers (IMSs) are useful because of their extremely low detection limits at short measuring periods and their compact and robust design. However, especially small IMSs suffer from the consequences of low resolving power when compared to laboratory systems. Therefore, in this paper, we present a new approach to increase the resolving power of a drift time IMS without employing higher drift voltages and bulky power supplies. The so-called moving field IMS (MOF-IMS) presented here allows a more effective use of the available voltage because of a segmented drift region where only a small part is supplied with voltage. Even with the basic version of an MOF-IMS presented here, it was possible to increase the resolving power by 60% from 60 to 95 without increasing the required drift voltage.Uncontrollable growth of lithium (Li) dendrite has severely hindered the development of Li metal anodes, while separator modification is regarded as a simple and effective way to mitigate the growth of Li dendrite. However, the "drop-dregs" phenomenon of coating layer desquamated from polyolefin separator due to their different Young's modulus would induce a nonuniform Li ionic flux, finally resulting in deteriorative electrochemical performance and even thermal runaway of the battery. Herein, we introduce a novel nanopile mechanical interlocking strategy to create delamination-free separator modification, which could stably generate a homogeneous Li ionic flux to guide long-term uniform Li deposition. Both experimental and simulation results demonstrate a strong bonding strength between the coating layer and membrane matrix based on this physical interlocking mechanism. Consequen