https://www.selleckchem.com/ The new COVID-19 pandemic has challenged policymakers on key issues. Most countries have adopted "lockdown" policies to reduce the spatial spread of COVID-19, but they have damaged the economic and moral fabric of society. Mathematical modeling in non-pharmaceutical intervention policy management has proven to be a major weapon in this fight due to the lack of an effective COVID-19 vaccine. A new hybrid model for COVID-19 dynamics using both an age-structured mathematical model based on the SIRD model and spatio-temporal model in silico is presented, analyzing the data of COVID-19 in Israel. Using the hybrid model, a method for estimating the reproduction number of an epidemic in real-time from the data of daily notification of cases is introduced. The results of the proposed model are confirmed by the Israeli Lockdown experience with a mean square error of 0.205 over 2 weeks. The use of mathematical models promises to reduce the uncertainty in the choice of "Lockdown" policies. The unique use of contact details from 2 classes (children and adults), the interaction of populations depending on the time of day, and several physical locations, allow a new look at the differential dynamics of the spread and control of infection.Since 2020, COVID-19 has wreaked havoc across the planet, taking the lives of more than one million people. The uncertainty and novelty of the current conditions call for the development of theory and simulation tools that can support effective policy-making. In article number 2000277, Agnieszka Truszkowska, Maurizio Porfiri, and co-workers report a high-resolution, agent-based modeling platform to simulate the spreading of COVID-19 in the city of New Rochelle, NY-one of the first outbreaks registered in the United States. Image by Anna Sawulska, Agnieszka Truszkowska, Beata Truszkowska, and Maurizio Porfiri. COVID-19 has hampered health-care delivery globally. We evaluated the feasibility, outcomes, and safety of tel