https://www.selleckchem.com/products/arv-771.html While have made significant contributions to our understanding of Pol β, the focus of this article is on the long history of the contributions from the Wilson lab. We have chosen to highlight select seminal Pol β structures with emphasis on the overarching contributions each structure has made to the field.Canonical DNA mismatch repair (MMR) excises base-base mismatches to increase the fidelity of DNA replication. Thus, loss of MMR leads to increased spontaneous mutagenesis. MMR genes also are involved in the suppression of mutagenic, and the induction of protective, responses to various types of DNA damage. In this review we describe these non-canonical roles of MMR at different lesion types. Loss of non-canonical MMR gene functions may have important ramifications for the prevention, development and treatment of colorectal cancer associated with inherited MMR gene defects in Lynch syndrome. This graphical review pays tribute to Samuel H. Wilson. Sam not only made seminal contributions to understanding base excision repair, particularly with respect to structure-function relationships in DNA polymerase β but also, as Editor of DNA Repair, has maintained a high standard of the journal.Base excision repair (BER) addresses the numerous base lesions and strand breaks induced by exogenous and endogenous stressors daily. The complexity and importance of BER requires careful regulation of basal levels of these proteins and inducible responses following DNA damage. Several reports have noted the dysregulation of BER proteins and defects in BER capacity in cancer. Modulated gene and protein expression of several BER proteins, including APE1, PARP1, POL β, and XRCC1, have been observed in breast cancer. Overexpression of these factors has been associated with chemoresistance and cancer aggressiveness, but the regulatory mechanisms that drive overexpression have not been defined. Here, we review the known transcriptional regul