The total PAH concentration in A-C dust was much higher than that in dust deposited outdoors in the urban area. The percentage of 5-6 ring PAHs accounted for more than 70% of the ∑16PAHs, which shows that the PAHs in A-C dust mainly come from pyrolysis rather than a diagenetic source. Principal component analysis (PCA) and diagnostic ratios were used in a source analysis, and the results indicated that the main PAHs emission sources in the different functional districts were coal, wood and biomass combustion. The incremental lifetime cancer risk (ILCR) values indicated a medium to high potential carcinogenic risk for adults and children exposed to dust with PAHs. Particularly, skin contact and ingestion of carcinogenic PAHs from dust are the major exposure pathways and present an exposure risk that is four to five orders of magnitude higher than the risk of inhalation. The main objective of the present investigation is appraisal of human health hazard based on the intake and dermal contact of fluoride enriched potable groundwater used for rural water supply in a semi-arid region (Shanmuganadhi River basin) of south India. A variance decomposition based Sobol sensitivity method was used to assess the relative contribution as well as interaction of input variables for both oral and dermal models. Three different scores were evaluated FOE (first order effect), SOE (second order effect) and TE (total effect) for different age groups of population including gender (kids, women and men). https://www.selleckchem.com/products/gdc6036.html The spatio-temporal mapping indicates that about 26% of water supply wells exceeded the recommended limit (WHO) of fluoride (>1.5 mg l-1) for safe intake. These wells spread over 104.03 km2 area consisting 16 villages in the basin. To assess the human health risk related to fluoride enrichment in potable water, hazard index (HI) was calculated as per USEPA guidelines. The non-carcinogenic risk baer, 'SA' has vital effect for kids (TE = 17.39). Because of this, older age group people have more dermal risk than the younger people. Therefore, the HQ dermal results indicate that 49%, 64% and 67% of samples possess non-carcinogenic risk to the kids, women and men respectively. Fish cage farming has been generally banned in some regions since there is growing concern about adverse environmental issue caused by cage culture practices. This paper presents the long-term effects of past cage culture activities on heavy metal accumulation in sediment and fish in one historical cage culture lake (Changshou reservoir, Chongqing, China). Although cages were removed for over one decade in this studied lake, the average concentrations of heavy metals in sediments were still above 2 times higher than their background values, posing a moderate ecological risk. Higher levels of heavy metals appeared in demersal fish who is more susceptible to heavy metals exposure in sediment. Fish consumption would not lead to a significant health risk of most heavy metals. Hg levels in catfish posed a health risk to vulnerable group (children) and specific group (fishermen), whereas the presence of Se decreased Hg toxicity to a safety level. Therefore, it can be speculated that the cage culture activities could influence the heavy metal accumulation in sediment in the long term, however, consumption of current farmed fish in one lake used to carry out cage-culture is safe for local residents. Antibiotics may constitute a risk for aquatic detritivorous macroinvertebrates (i.e., shredders) via waterborne and dietary antibiotic exposure. In addition, antibiotics can alter the food quality for shredders mediated by shifts in leaf-associated decomposer (i.e., aquatic fungi and bacteria) communities. However, little is known about the relative importance of the waterborne and dietary effect pathway. Therefore, we followed a tiered testing approach aimed at assessing the relative importance of these effect pathways. We employed the antibiotic ciprofloxacin (CIP) and the shredder Gammarus fossarum as model stressor and test species, respectively. In a first step, we assessed the short-term waterborne toxicity of CIP using survival and leaf consumption of G. fossarum as response variables. Alterations in the leaf-associated decomposer community, which may be reflected by their palatability, were assessed using food choice assays. Finally, we conducted a 2 × 2-factorial experiment over 24 days assessing the pathways individually and combined using energy processing (i.e., leaf consumption and feces production), growth and energy storage (i.e., neutral lipid fatty acids) as variables. Short term waterborne exposure indicated low toxicity with LC50 and EC50 values of 13.6 and 6.4 mg CIP/L, respectively. At the same time, shredders did not prefer any leaf material during the food choice assay. However, the fungal community was significantly affected in the highest CIP-treatments (0.5 and 2.5 mg/L) suggesting an altered food quality for shredders. This assumption is supported by the results of the long-term assay. At 0.5 mg CIP/L, gammarids' leaf consumption, growth and energy storage were increased when subjected via the dietary pathway, which was linked to changes in the leaf-associated microbial community. Our data highlight the importance of dietary effect pathways for effects on shredders, potentially impacting energy dynamics in detritus-based stream ecosystems. This paper overviews silica suspensions in water-immiscible liquids, with an emphasis on their dispersion stability and rheological properties as a function of the surface characteristics of silica powders at lower silica volume fractions, ϕ, than 0.1. In addition, a critical review is presented the manufacturing process of silica powder by considering their microstructures. Hydrophilic fumed silica powders are in a gel state at lower ϕ than hydrophobic fumed silica powders in water-immiscible liquids. The interaction between the surface silanol groups is dominant in the former; whereas in the latter, the mutual interaction between the surface hydrophobic moieties and the dispersion media is favored. Moreover, the dynamic moduli of the hydrophobic fumed silica suspensions strongly depend on the mutual interaction between the hydrophobic moieties and the dispersion media. Their magnitudes become larger as mutual interactions increase. In addition, the effects of the adsorption of polymers and non-adsorbing polymers on the dispersion stability and rheological behavior of hydrophilic or hydrophobic fumed silica suspensions are discussed, by considering their small-angle neutron scattering (SANS) curves.